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A B S T R A C T

This thesis concerns the iteration of transcendental self-maps of the

punctured plane C∗ := C \ {0}, that is, functions f : C∗→ C∗ that are

holomorphic on C∗ and for which both zero and infinity are essential

singularities. We focus on the escaping set of such functions, which

consists of the points whose orbit accumulates to zero and/or infinity

under iteration. The escaping set is closely related to the structure of

the phase space due to its connection with the Julia set.

We introduce the concept of essential itinerary of an escaping point,

which is a sequence that describes how its orbit accumulates to the

essential singularities, and plays a very important role throughout

the thesis. This allows us to partition the escaping set into uncount-

ably many non-empty subsets of points that escape in non-equivalent

ways, the boundary of each of which is the Julia set. We combine the

iterates of the maximum and minimum modulus functions to define

the fast escaping set for functions in this class and, for such functions,

construct orbits with several types of annular itinerary, including fast

escaping and arbitrarily slowly escaping points.

Next we proceed to study in detail the class B∗ of bounded-type

transcendental self-maps of C∗, for which the escaping set is a sub-

set of the Julia set, so such functions do not have escaping Fatou

components. We show that, for finite compositions of transcenden-

tal self-maps of C∗ of finite order (and hence in B∗), every escaping

point can be joined to one of the essential singularities by a curve

of points that escape uniformly. Moreover, we prove that, for every

essential itinerary, the corresponding escaping set contains a Cantor

bouquet and, in particular, uncountably many such curves.

Finally, in the last part of the thesis we direct our attention to the

functions that do have escaping Fatou components. We give the first ex-

plicit examples of transcendental self-maps of C∗ with Baker domains

and escaping wandering domains and use approximation theory to cons-

truct functions with escaping Fatou components that have any pre-

scribed essential itinerary.
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1
I N T R O D U C T I O N

The material in this thesis belongs to the research area known as

Complex Dynamics, which lies in the intersection between Dynamical

Systems and Complex Analysis. The iteration of rational and trans-

cendental entire functions has been widely studied since the early

20th century. However, the iteration of transcendental self-maps of

the punctured plane, that is, holomorphic self-maps of C∗ := C \ {0}

that have two essential singularities, at zero and infinity, has received

much less attention. In this thesis we study the escaping set of such

functions, which consists of the points that accumulate at zero and/or

infinity under iteration.

1.1 an introduction to complex dynamics

Complex Dynamics concerns the iteration of a holomorphic function

on a Riemann surface S, usually a subset of the Riemann sphere

Ĉ := C∪ {∞}. If f : S ⊆ Ĉ→ S is holomorphic and Ĉ \ S consists of

essential singularities, then conjugating by a Möbius transformation,

we can reduce to the following three cases:

• S = Ĉ := C∪ {∞} and f is a rational map;

• S = C and f is a transcendental entire function;

• S = C∗ := C \ {0} and f has essential singularities at both zero

and infinity.

By Picard’s theorem, there are no holomorphic self-maps of S ⊆ Ĉ

where Ĉ \ S consists of three or more essential singularities. Observe

that, for the same reason, holomorphic self-maps of C∗ have no omit-

ted values in C∗. We may also consider the iteration of transcendental

meromorphic functions on C, for which infinity is an essential singula-

rity and the poles form a discrete set. The texts [Bea91; CG93; Mil06;

Ste93] are basic references on the iteration of holomorphic functions;

1



2 introduction

see [Ber93] for a survey on the iteration of transcendental entire and

meromorphic functions.

The dynamical partition

Given a holomorphic function f : S→ S, where S is Ĉ, C or C∗, and a

point z0 ∈ S, we consider the sequence given by its iterates

fn(z0) := (f ◦ n· · · ◦f)(z0) for n ∈N,

and, for n = 0, we define f0(z0) := z0. Throughout the thesis, we use

the notation N0 for the set N ∪ {0}. We define the (forward) orbit of a

point z0 ∈ S to be the set

O+(z0, f) := {z ∈ S : z = fn(z0) for some n ∈N0}

and the backward orbit of z0 ∈ Ĉ to be the set

O−(z0, f) := {z ∈ S : z0 = f
n(z) for some n ∈N}.

We also define the grand orbit of z0 ∈ S to be the set

O(z0, f) := {z ∈ S : fm(z) = fn(z0) for some m,n ∈N}.

We say that a set X ⊆ S is (forward) invariant under f if f(X) ⊆ X.

If, moreover, f−1(X) ⊆ X, then we say that X is completely invariant

under f. Grand orbits are the smallest completely invariant sets that

we can partition the phase space, or set of initial conditions, S into.

However, we will be interested in another partition that arises from

the dynamics.

We define the Fatou set of f, or stable set, as

F(f) :=
{
z ∈ S : {fn}n∈N is a normal family in a neighbourhood of z

}
and we define the Julia set of f, or chaotic set, as its complement,

J(f) := S \ F(f). Alternatively, we can define F(f) as the set of points

where the family of iterates of f are equicontinuous. Thus, the Fatou

set is open and the Julia set is closed.



1.1 an introduction to complex dynamics 3

The sets F(f) and J(f) are named after Pierre Fatou (1878 – 1929)

and Gaston Julia (1893 – 1978). Motivated by the 1918 Grand Prix of

the Académie des Sciences in Paris which was to be awarded for a

study of iteration from a global point of view, both of these French

mathematicians produced long memoirs on the use of Montel’s nor-

mal families in the iteration of holomorphic functions [Fat19; Jul18].

Previously, Schröder and Cayley had studied the dynamics of New-

ton’s method applied to a cubic polynomial but failed to give a global

description because this involves what we now know to be a fractal

Julia set. Although Fatou ended up not submitting his work and Julia

was awarded the prize, their works laid the foundations of what we

now call Complex Dynamics. You can read about the beginnings of

this research area in [Ale94].

Both Fatou and Julia studied the iteration of rational functions in

their memoirs and later on Fatou [Fat26] also studied the iteration of

transcendental entire functions. However, it was not until 1953 that

Rådström [Råd53] considered the iteration of holomorphic self-maps

of C∗. In this section we outline the basic properties of the iteration of

rational functions, transcendental entire functions and transcendental

self-maps of C∗, and in Section 1.3 we describe the aspects of research

which are specific to holomorphic self-maps of C∗.

The Fatou and Julia sets are both completely invariant and satisfy

F(fn) = F(f) and J(fn) = J(f) for n ∈ N (see [Ber93, Section 1.2]

for the proofs of the elementary properties of the Fatou and Julia

sets). The Julia set has the dichotomy that either J(f) = S or J(f)

has empty interior, and there are examples of functions for which

J(f) = S in the three classes described above. We say that z0 ∈ S is a

(finite) exceptional value if O−(z0, f) is finite. Rational functions have at

most two such values while transcendental entire functions have at

most one and transcendental self-maps of C∗ have none. If z0 ∈ J(f)
is not an exceptional value, then we have J(f) = O−(z0, f). It follows

from Montel’s theorem and the existence of repelling periodic points

in J(f) (that we will discuss in the next section) that if z0 ∈ J(f) and

U is an open neighbourhood of z0, then for any compact set K ⊆ S
which contains no exceptional values, there exists N = N(K) ∈ N

such that fn(U) ⊇ K for all n > N. We refer to this property as the

blowing-up property of the Julia set.
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Periodic orbits

We say that a point z0 ∈ S is a fixed point of f if f(z0) = z0 and we

say that z0 is a periodic point of f (of period p ∈N) if fp(z0) = z0 and

fk(z0) 6= z0 for 0 < k < p. Observe that periodic points of period p

can be regarded as fixed points of the map fp. If there exists n ∈ N

such that fn(z0) is a periodic point but z0 is not periodic, then we say

that z0 is a preperiodic point of f.

Given a periodic cycle {z0, z1, . . . , zp−1}⊆ C of f of period p ∈ N;

that is, f(zk) = zk+1 for 0 6 k < p− 1 and f(zp−1) = z0, we define

the multiplier of this orbit as

λ := (fp) ′(zk) =

p−1∏
j=0

f ′(zj)

where 0 6 k < p. Observe that the second equality follows easily from

the chain rule. The multiplier of a periodic cycle is invariant under

conformal conjugation, so if a periodic cycle contains infinity, we can

conjugate f by a Möbius transformation and reduce to the case above.

We also refer to λ as the multiplier of each point zk, 0 6 k < p, in the

orbit. Note that for fixed points the multiplier is just the derivative

of the function at that point. Then, according to the multiplier, we

classify periodic orbits into the following types:

• we say that {z0, z1, . . . , zp−1} is a (super)attracting periodic orbit

if |λ| < 1 (λ = 0), and then there exists a neighbourhood Uk of

each point zk, 0 6 k < p, such that for all z ∈ Uk, fnp(z)→ zk

as n→∞;

• we say that {z0, z1, . . . , zp−1} is a repelling periodic orbit if |λ| > 1,

and then there exists a neighbourhood Uk of each point zk,

0 6 k < p, such that for all z ∈ Uk \ {zk}, there exists a value

n = n(z) ∈N such that fnp(z) /∈ Uk;

• we say that {z0, z1, . . . , zp−1} is an indifferent (or neutral) periodic

orbit if |λ| = 1, and then we can further classify the orbit into:

– a rationally indifferent (or parabolic) periodic orbit if λ = e2πiθ

with θ ∈ Q;

– an irrationally indifferent periodic orbit if λ = e2πiθ with

θ ∈ R \ Q.
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Observe that attracting periodic orbits are in the Fatou set, while

repelling and rationally indifferent periodic points are in the Julia

set. Irrationally indifferent periodic orbits can lie in either F(f) or J(f)

depending on the arithmetic properties of the number θ ∈ R \ Q.

Both Fatou and Julia showed that, for rational functions, J(f) is the

closure of the set of repelling periodic points of f. For transcendental

entire functions, this fact is due to Baker [Bak68] and, for transcen-

dental self-maps of C∗, this was proved by Bhattacharyya [Bha69].

Results on the existence of periodic points can be used to show that

J(f) is an infinite set and it then follows that J(f) is a perfect set.

We mentioned before that the set J(f) is chaotic. To justify this we

use the definition given by Devaney [Dev86]: a dynamical system

f : X→ X is said to be chaotic if it has the following three properties:

• f has sensitive dependence on initial conditions; that is, there exists

δ > 0 such that for any p ∈ X and any open neighbourhood U

of p, there exist q ∈ U and n > 0 such that |fn(p) − fn(q)| > δ;

• f is topologically transitive; that is, for every pair of non-empty

open sets U,V ⊆ X, there exists n ∈N such that fn(U)∩ V 6= ∅;

• periodic orbits are dense in X.

Observe that our previous discussion implies that the restriction of f

to J(f) satisfies these three properties.

Classification of the Fatou components

We now turn our attention to the Fatou set. We refer to the connected

components of the Fatou set as Fatou components. Let U be a Fatou

component and denote by Un, n ∈ N, the Fatou component that

contains fn(U). For rational functions, we have f(U) = U1. Herring

[Her98] showed that, for transcendental entire functions and transcen-

dental self-maps of C∗, U1 \ f(U) consists of at most one point, which

need not be an omitted value. Moreover, he showed that, for transcen-

dental self-maps of C∗, if U1 is doubly connected, then f(U) = U1.

We say that a Fatou component U is periodic if Up = U for some

p ∈ N and we say that U is preperiodic if U is not periodic but Un
is periodic for some n ∈N. Suppose that U is an invariant Fatou
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component of f (otherwise consider an iterate fp). Then U can be

classified into the following types:

• U is an (immediate) basin of attraction: there exists an attracting

fixed point z0 ∈ U and for all z ∈ U, fn(z)→ z0 as n→∞;

• U is a parabolic basin of attraction (or a Leau domain): there exists

a parabolic fixed point z0 ∈ ∂U with multiplier λ = 1 and for

all z ∈ U, fn(z)→ z0 as n→∞;

• U is a Siegel disc: there exists an irrationally indifferent fixed

point z0 ∈ U with multiplier λ = e2πiθ for some θ ∈ R \ Q

and there exists a biholomorphic function φ :U→ D such that

φ(f(φ−1(z))) = e2πiθz for all z ∈ D;

• U is a Herman ring: there exists a biholomorphic function

φ : U → A for some annulus A := {z ∈ C : 1 < |z| < r} such

that φ(f(φ−1(z))) = e2πiθz for some θ ∈ R \ Q and all z ∈ A;

• U is a Baker domain: there exists an essential singularity α ∈ ∂U
and for all z ∈ U, fn(z)→ α as n→∞.

It follows easily from the maximum principle that Herman rings must

contain a pole or an essential singularity inside their bounded com-

plementary component, and hence entire functions do not have Her-

man rings. Since Baker domains require the presence of an essential

singularity, rational functions do not have Baker domains.

We say that a Fatou component U is a wandering domain if U is nei-

ther periodic nor preperiodic or, in our previous notation, ifUm = Un

implies m = n. Fatou conjectured that rational functions do not have

wandering domains but was not able to discard this possibility. Af-

ter the papers of Fatou [Fat19] and Cremer [Cre32] studying peri-

odic Fatou components, we have to wait for over 50 years until Sul-

livan’s celebrated ’no wandering domains’ theorem [Sul85], in which

he proved Fatou’s conjecture. However, transcendental entire func-

tions and transcendental self-maps of C∗ do have wandering domains

(see [Bak63; Bak76] and [Kot90] respectively).

Following Sullivan’s result, Eremenko and Lyubich [EL84] and Gold-

berg and Keen [GK86] proved, independently, that if f is a transcen-

dental entire function of finite type (see definition later), then F(f) has

no wandering domains. The analogous statement for transcendental
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self-maps of C∗ was proved, also independently, by Keen [Kee88] and

Kotus [Kot87] (see also [Mak87] and [Fan91]).

Fatou [Fat19] proved that a rational function can have at most

two completely invariant Fatou components. For transcendental en-

tire functions, Baker [Bak70] showed that there can be at most one

completely invariant Fatou component and Bhattacharyya [Bha83]

adapted Baker’s arguments to C∗. Later on, Hinkkanen [Hin94] gave

an alternative proof of this result for C∗.

Singularities of the inverse function

There is a very strong connection between the Fatou components of f

and the singularities of the inverse function f−1. We denote by sing(f−1)

the set of singularities of f−1 which consists of the following two

kinds of points:

• v ∈ S is a critical value of f if there exists a critical point c ∈ S
(that is, f ′(c) = 0) such that v = f(c);

• a ∈ S is a (finite) asymptotic value of f if there exists a curve

γ : [0,+∞)→ S (an asymptotic path over a) such that γ(t)→ α as

t→ +∞where α is an essential singularity of f and f(γ(t))→ a

as t→ +∞.

Of course, rational functions do not have asymptotic values and have

a finite number of critical values. In the entire case, we define the

Speiser class of finite-type transcendental entire functions by

S := {f transcendental entire function : # sing(f−1) < +∞}.

Note that, for transcendental self-maps of C∗, asymptotic paths can

either tend to zero or to infinity. The following results relate Fatou

components and singular values of a function f:

• if {U0,U1, . . . ,Up−1} is a cycle of immediate basins of attrac-

tion or a cycle of parabolic basins of attraction, then there exists

0 6 k < p such that Uk ∩ sing(f−1) 6= ∅;

• if {U0,U1, . . . ,Up−1} is a cycle of Siegel discs or a cycle of Her-

man rings, then ∂Uk ⊆ O+(sing(f−1), f) for all 0 6 k < p.
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The connection between Baker domains and wandering domains and

the singularities of the inverse is more subtle (see, for instance, [BW91;

EL92; BD99; MR13]).

1.2 the escaping set

For an entire function f, we define the escaping set of f as the set of

points that tend to infinity under iteration; that is,

I(f) := {z ∈ C : fn(z)→∞ as n→∞}.

Despite being completely different from the topological point of view,

the investigation of the properties of the escaping set has provided

important insight into the Julia set of both polynomials and transcen-

dental entire functions.

The escaping set of polynomials

For polynomials, the escaping set consists of the basin of attraction

of infinity, which is an unbounded connected open set in F(f), and

its boundary is J(f). In this setting, the complement of I(f) is known

as the filled Julia set, K(f). In the Orsay notes [DH84], Douady and

Hubbard carried out an extensive study of the dynamics of quadratic

polynomials. One of the main tools used there are external rays: given

a connected filled Julia set K(f), we can define the Böttcher map

ϕK(f) : C \K(f)→ C \ D,

which is conformal, and then, for every θ ∈ [0, 1), define the external

ray of argument θ as

Rθ(r) := ϕ
−1
K(f)(re

2πiθ), for r > 1.

The external ray Rθ is said to land if there exists zθ ∈ K(f) such that

Rθ(r) → zθ as r → 1. By Carathéodory’s theorem, if K(f) is locally

connected, then all external rays land. Thus the fact that external rays

are organised by the dynamics f(Rθ) = Rdθ (mod 1), where d = degP,

leads to a combinatorial description of the Julia set.
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The escaping set of transcendental entire functions

For transcendental entire functions, the escaping set also plays a very

important role although the nature of the set is much more compli-

cated. It was first studied by Eremenko [Ere89] who used Wiman-

Valiron theory to show that, for a transcendental entire function f,

(I1) I(f)∩ J(f) 6= ∅;

(I2) J(f) = ∂I(f);

(I3) the components of I(f) are unbounded.

We often refer to properties (I1), (I2) and (I3) as Eremenko’s properties.

Note that property (I1) contrasts strongly with the situation for poly-

nomials, whereas property (I2) is common for both polynomials and

transcendental entire functions. In the same paper, Eremenko conjec-

tured that, for transcendental entire functions, property (I3) can be

strengthened to say that all the components of the escaping set are

also unbounded and this remains an open question.

A stronger version of Eremenko’s conjecture states that, for a tran-

scendental entire function, every escaping point a can be joined to

infinity by a curve of points that escape uniformly. Such curves are

called ray tails and their maximal extensions are called dynamic rays

(see Definition 3.54) in analogy to the polynomial case.

Devaney and Krych [DK84] showed that for certain maps in the

exponential family

Eλ(z) := λe
z, λ ∈ C∗,

namely if λ ∈ (0, 1/e), the Julia set of Eλ consists of dynamic rays

that they called hairs (see Figure 1). Devaney and Tangerman [DT86]

proved that the same holds for certain functions of finite type, that

is, functions with finitely many singular values, satisfying additional

technical conditions, such as the sine family Sλ(z) = λ sin(z), λ ∈ (0, 1).

They coined the term Cantor bouquet to describe the Julia set of these

functions. They first defined a CantorN-bouquet, whereN ∈N, to be

a subset of J(f) homeomorphic to the product of a Cantor set ΣN and

the half-line [0,+∞) satisfying that ΣN1 ⊆ ΣN2 if N1 6 N2, and then

they defined a Cantor bouquet to be an increasing union of Cantor

N-bouquets as N→∞.
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Figure 1: Cantor bouquet in the phase space of the function f(z)=z+1+e−z

originally studied by Fatou.

Aarts and Oversteegen [AO93] introduced a slightly different defi-

nition of a Cantor bouquet in terms of a topological object called

a straight brush (see Definition 3.68) that allows the comparison of

Julia sets of different functions, for example, showing that they are

homeomorphic and are equivalently embedded in the plane.

The Eremenko-Lyubich class B

Eremenko and Lyubich [EL92] studied the dynamics of functions in

the class

B := {f trancendental entire function : sing(f−1) is bounded},

which includes all the functions in the class S and many more; we

say that these functions have bounded type. They showed that, besides

Eremenko’s properties (I1), (I2) and (I3), functions in the class B ad-

ditionally satisfy

(I4) I(f) ⊆ J(f);

or, in other words, they have no Baker domains and no escaping

wandering domains. In terms of Iversen’s classification of singulari-

ties [Ive14] (see also [BE95]), functions in the class B have a direct

logarithmic singularity over infinity: if R > 0 is sufficiently large that

sing(f−1) ⊆ D(0,R) and W := C \D(0,R), then each connected com-

ponent V of the set V := f−1(W) is an unbounded Jordan domain

called a (logarithmic) tract of f, and the restriction f|V : V → W is a
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universal covering map. To study the properties of the escaping set of

functions in the class B, Eremenko and Lyubich introduced a logarith-

mic change of variables in a neighbourhood of infinity, also known

as logarithmic coordinates. Take R > 0 so that |f(0)| < R; if we define

T := exp−1 V and H := exp−1W, then there exists a holomorphic

function F : T → H such that the following diagram commutes:

T
F //

exp
��

H

exp
��

V
f
//W

Such a function F is called a logarithmic transform of f and the restric-

tion F|T : T → H is a conformal isomorphism for every component

T of T (also called a tract of F). Using this, Eremenko and Lyubich

showed that functions in the class B have a strong expansivity property

(see Lemma 3.21), which enabled them to prove (I4).

To study the dynamics of F, it is useful to consider the set of points

whose orbit under F is contained in T and use symbolic dynamics to

describe their orbits: to every point z, we can associate a sequence of

tracts (Tn), the external address of z, so that Fn(z) ∈ Tn for n ∈ N0.

Then the iteration of F in this set corresponds to the iteration of the

Bernoulli shift map σ given by (Tn) 7→ (Tn+1) on the set of infinite

sequences TN0 .

Functions in the class B satisfy many other useful properties. For

instance, they are bounded on a path to infinity, and hence all their

Fatou components are simply connected, by Baker [Bak84], and it

follows from a theorem of Heins [Hei48] that they have lower order

(see definition in Section 3.1) at least a half.

In 2011, Rottenfußer, Rückert, Rempe and Schleicher [RRRS11] pro-

ved that the stronger version of Eremenko’s conjecture holds for trans-

cendental entire functions of bounded type and finite order or, more

generally, for finite compositions of such functions. Roughly speak-

ing, we say that an entire function has finite order if the maximum

modulus of f in the disc D(0, r) does not grow faster than exp(rk) as

r→ +∞ for some k ∈N. In the second part of [RRRS11], the authors

show that there is a function in the class B for which every path-

connected component of J(f) (and thus I(f)) is bounded, and hence

the stronger version of Eremenko’s conjecture fails in B. The positive
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result from [RRRS11] was proved independently by Barański [Bar07]

for functions of disjoint type, that is, transcendental entire functions

for which the Fatou set consists of a single completely invariant com-

ponent that is a basin of attraction. Later on, Barański, Jarque and

Rempe [BJR12] proved that, actually, the Julia set of the functions

considered in [RRRS11] contains a Cantor bouquet.

The fast escaping set

Key progress on Eremenko’s conjecture was obtained by studying the

fast escaping set defined by

A(f) := {z ∈ C : ∃` ∈N0, |fn+`(z)| >Mn(R, f) for all n ∈N0},

where M(r, f) = max|z|=r |f(z)| and R > 0 is chosen to be sufficiently

large so that Mn(R, f)→ +∞ as n→∞.

The set A(f), which consists of the points that escape about as fast

as possible, was introduced by Bergweiler and Hinkkanen [BH99]

and shares some properties with I(f), for example, J(f) ∩ A(f) 6= ∅
and J(f) = ∂A(f) (see [BH99] and [RS05b]). But it also has some much

nicer properties. Rippon and Stallard showed that all the components

of A(f) are unbounded, and hence I(f) has at least one unbounded

component. For the class of functions from [RRRS11], Rippon, Rempe

and Stallard [RRS10] proved that, under an additional condition, the

dynamic rays in J(f) are in A(f) apart from possibly their finite end-

point. The paper [RS12] gives a compilation of results about the fast

escaping set.

For every transcendental entire function, the Julia set also contains

points that escape arbitrarily slowly; that is, for any sequence (rn) of

positive real numbers such that rn → +∞ as n→∞, there is z ∈ J(f)
such that |fn(z)| 6 rn for all n ∈ N sufficiently large. This follows,

for example, from the construction in [RS15]. In that paper, Rippon

and Stallard study a partition of the plane into annuli that are defined

using the iterates of the maximum modulus function M(r, f) starting

with a sufficiently large r > 0. To each point z ∈ I(f), they associate a

sequence of natural numbers (sn), the annular itinerary, that describes

to which annulus the nth iterate of z belongs. Rather surprisingly,

they then show that, for every transcendental entire function, almost
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every possible sequence is the annular itinerary of a point in I(f). For

the class of functions studied in [RRS10], J(f) consists of dynamic rays

and the slow escaping points are a subset of the endpoints of these

rays.

The escaping set of other classes of functions

To conclude this section, we define the escaping set for other classes

of functions that are not entire. If f is a transcendental meromorphic

function, then we define the escaping set of f by

I(f) := {z ∈ C : fn(z) is defined for n ∈N and fn(z)→∞ as n→∞}.

Note that if f is a holomorphic self-map of C∗ with an essential singu-

larity at infinity and a single pole at the origin that is omitted, then we

can use the same definition of I(f) as for entire functions. Domínguez

[Dom98] proved that the analogues of Eremenko’s properties (I1) and

(I2) also hold in this setting; that is, I(f) ∩ J(f) 6= ∅ and J(f) = ∂I(f).

However, in this case the components of I(f) need not be unbounded

but, if they are bounded, then they need to have the pole at zero in

their closure.

For transcendental self-maps of C∗, the escaping set is given by

I(f) := {z ∈ C∗ : ω(z, f) ⊆ {0,∞}}

where ω(z, f) is the classical omega-limit set

ω(z, f) :=
⋂

n∈N

{fk(z) : k > n},

and the closure is taken in Ĉ. Very little has been proved about this

set, which forms the focus of our thesis.

1.3 holomorphic self-maps of the punctured plane

In this section we describe the properties of the iteration of transcen-

dental self-maps of C∗ and the larger class of holomorphic self-maps

of C∗. Let f : C∗ → C∗ be a holomorphic function and suppose that



14 introduction

f is not a rational function. Then we can assume without loss of gene-

rality that infinity is an essential singularity and f can be classified

into one of the following three classes according to the nature of the

point zero:

1. zero is a regular point and f is a transcendental entire function,

and hence f(z) = zn exp(g(z)), where n > 0 and g is a non-

constant entire function;

2. zero is a pole and f is a transcendental meromorphic function,

and hence f(z) = zn exp(g(z)), where n < 0 and g is a non-

constant entire function;

3. zero is an essential singularity, and hence

f(z) = zn exp(g(z) + h(1/z)), (1.1)

where n ∈ Z and g,h are non-constant entire functions.

The expressions for the function f above follow from the fact that the

function log(f(z)/zn) is holomorphic in C∗ (see [Råd53, p. 88] and

[Bha69, Section 1.2] for the details).

The number n ∈ Z in the cases 1-3 above is called the index of f,

written ind(f) = n, and equals the index (or winding number) of f(γ)

with respect to the origin, where γ is any positively oriented simple

closed curve around the origin.

If f is a holomorphic self-map of C∗, then there exists a transcen-

dental entire function f̃ that is semiconjugated to f by the exponential

function; that is,

exp ◦ f̃ = f ◦ exp .

Such a function f̃ is called a lift of f and is unique up to the addition

of multiples of 2πi; that is, f̃(z) + 2kπi is also a lift of f for any k ∈ Z.

For example, if f(z) = zn exp(z + 1/z) with n ∈ Z, then the entire

function f̃(z) = nz+ ez+ e−z = nz+ 2 cosh(z) is a lift of f. If f̃ is a lift

of f, then

f̃(z+ 2kπi) = f̃(z) + ind(f) · 2kπi (1.2)

for all z ∈ C and k ∈ Z. Bergweiler [Ber95] showed that if f is a

holomorphic self-map of C∗ and f̃ is a lift of f, then J(f̃) = exp−1 J(f).
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Examples of holomorphic self-maps of C∗

Transcendental self-maps of C∗ arise in a natural way in many ins-

tances, for example, when you complexify circle maps, like the so-

called Arnol’d standard family, by performing analytic continuation:

fαβ(θ) = θ+α+β sin θ (mod 2π), 0 6 α 6 2π, β > 0,

for θ ∈ R, has as complexification (see, for example, [Fag99]):

f̂αβ(z) = ze
iαeβ(z−1/z)/2, 0 6 α 6 2π, β > 0,

for z ∈ C∗; that is, f̂αβ(eiθ) = eifαβ(θ) for all θ ∈ R (see Figure 4). We

refer to the functions f̂αβ as the complex standard family.

Figure 2: Phase space of the function f̂αβ from the complex standard family,
with α = 3.1, β = 0.8 (left) and α = 3.1, β = 5 (right).

Fagella [Fag99] showed that for maps in the complex standard

family there exists an invariant set of dynamic rays that are organ-

ised by some symbolic dynamics and consists of points that, except

possibly the finite endpoints, escape exponentially fast. For parame-

ters with rational rotation numbers, that is, in the so-called Arnol’d

tongues, she characterised some bifurcations in terms of sets of hairs

attaching to the unit circle. Finally, she also showed that, for some

irrational rotation numbers, the Fatou set contains a Herman ring.

The maps in the complex standard family belong to the class of

holomorphic self-maps of C∗ that are of the form

f(z) = zn exp(P(z) +Q(1/z)) (1.3)
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where n ∈ Z and P,Q are polynomials. Such maps were considered

for the first time by Keen [Kee88; Kee89] who showed that they have

a finite number of singular values. Later on we will see that tran-

scendental self-maps of C∗ of finite order are precisely of this form.

Finite type holomorphic self-maps of C∗ were also studied in [Kee88;

Kot87; Mak91], where the authors investigated the space of functions

that are topologically conjugated to a given transcendental self-map

of C∗.

Properties of the Fatou set

One of the main differences between the iteration of transcenden-

tal entire functions and transcendental self-maps of C∗ lies in the

topology of their Fatou components. Baker [Bak87, Theorem 1] (see

also [Mak87] and [Fan91]) showed that if f is a holomorphic self-map

of C∗ that is not a rational function, then the components of F(f) are

either simply connected or doubly connected, and there is at most

one doubly connected component, which must separate zero from

infinity. This contrasts with the fact that, for transcendental entire

functions, Baker [Bak84] proved that every multiply connected Fatou

component is a wandering domain whose iterates escape to infinity.

Another difference between iteration in C and in C∗ is that, in

the entire case, multiply connected Fatou components are bounded

while, for transcendental self-maps of C∗, doubly connected Fatou

components may be bounded or unbounded. We say that a set X is

unbounded in C∗ if X̂∩ {0,∞} 6= ∅, where X̂ is the closure of X in Ĉ.

Baker showed that the functions

f(z) = exp(αz−α/z), 0 < α < 1/2, (1.4)

have a doubly connected Fatou component with both zero and infin-

ity in its boundary (see [Bak87, Theorem 2]).

Later on, Baker and Domínguez [BD98] classified the doubly con-

nected Fatou components of holomorphic self-maps of C∗ that are

bounded in C∗. Let U be such a Fatou component of a function f.

Then there are three possibilities:

• U is an invariant Herman ring;



1.3 holomorphic self-maps of the punctured plane 17

• U is a preperiodic Fatou component;

• U is a wandering domain.

The first case can only occur if |ind(f)| = 1, while the second and

third cases can only occur if ind(f) = 0. Therefore, if ind(f) /∈ {0,±1},
the bounded Fatou components of f are all simply connected (see

[Mak91]).

Since it was not clear whether the doubly connected Fatou compo-

nent was bounded or not for the previous examples in the literature,

Baker and Domínguez provided examples of functions of each of the

three kinds and showed that their doubly connected Fatou compo-

nents are bounded [BD98, Theorems 5, 6 and 7]. For instance, they

constructed a function with an attracting basin that has a doubly con-

nected preimage that is bounded in C∗.

Baker and Domínguez [BD98] also discussed the case of unbounded

doubly connected Fatou components. They observed that it is possi-

ble to have periodic Fatou components that are doubly unbounded,

and gave as an example (1.4) whose Fatou set is connected and hence

unbounded in C∗, and completely invariant.

Baker [Bak87] used approximation theory to construct the first ex-

ample of a holomorphic self-map of C∗ (which was entire) with a

wandering domain that escapes to infinity. The first examples of trans-

cendental self-maps of C∗ with a wandering domain are due to Kotus

[Kot90], where the wandering domain accumulates to zero or infin-

ity, or alternates between both of them. In the same paper, Kotus

also constructed an example with an infinite limit set by adapting

the techniques from [EL92]. Mukhamedshin [Muk91] used quasicon-

formal surgery to glue together two transcendental entire functions,

each with a Siegel disc and a wandering domain, and thus create a

transcendental self-map of C∗ with a Herman ring and two wander-

ing domains, one escaping to zero and the other one to infinity. And

finally, the most recent examples are due to Baker and Domínguez

[BD98] who constructed examples of transcendental self-map of C∗

with doubly connected wandering domains that escape to infinity

and can be chosen to be bounded or unbounded in C∗.

The only previous examples of Baker domains of transcendental

self-maps of C∗ that the author is aware of are due to Kotus [Kot90].

She used approximation theory to construct two functions with in-
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variant hyperbolic Baker domains escaping to zero and to infinity

respectively.

Properties of the Julia set

Regarding the properties of the Julia set, Baker and Domínguez [BD98]

proved that, if f is a transcendental self-map of C∗, then all the com-

ponents of J(f) are unbounded in C∗. Note that, in particular, this

implies that J(f) does not have singleton components. This contrasts

with the following result from Domínguez [Dom97] (see also [Ber00]),

who proved that if a transcendental entire function has a multiply

connected Fatou component, then buried singleton components are

dense in J(f); a component of J(f) is called buried if it does not meet

the boundary of any Fatou component of f. However, Kisaka [Kis98]

showed that this phenomenon is specific to transcendental entire func-

tions with multiply connected Fatou components. He proved that, for

a transcendental entire function f, all the components of J(f) are un-

bounded if and only if f has no multiply connected Fatou component.

For transcendental entire or meromorphic functions, the Julia set

has either one or uncountably many components (see, for example,

Baker and Domínguez [BD00]). Baker and Domínguez [BD98] proved

that, if f is a holomorphic self-map of C∗ that is not a rational func-

tion, then J(f) ∩C∗ has either one or infinitely many components (in

[BD00], it was remarked that, in the latter case, there are uncount-

ably many components). This implies that, if the closure of J(f) in Ĉ

has two components, then J(f) ∩C∗ has infinitely many components.

Thus, one of the following three cases holds:

• both J(f)∩C∗ and its closure in Ĉ are connected;

• J(f)∩C∗ has infinitely many components and its closure in Ĉ is

connected;

• J(f) ∩C∗ has infinitely many components and its closure in Ĉ

has two components.

Note that we write J(f)∩C∗ because in the case that f is a transcenden-

tal entire function, J(f) may contain the origin. Baker and Domínguez

[BD98] also gave examples of functions in each of these three cases.
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In terms of measure, Kotus [Kot87] proved that, under certain con-

ditions, the Julia set of holomorphic self-maps of C∗ has Lebesgue

measure zero. In [Fan93], Fang showed that, for maps of the form

f(z) = zn exp(zp + 1/zq), n ∈ Z, p,q > 1, the Julia set J(f) has posi-

tive measure.

Very little work has been carried out on the escaping set of a gen-

eral transcendental self-map of C∗, although Fang [Fan98] introduced

the following subsets of I(f)

I0(f) := {z ∈ C∗ : fn(z)→ 0 as n→∞},

I∞(f) := {z ∈ C∗ : fn(z)→∞ as n→∞},

and showed that they satisfy the analogues of Eremenko’s properties,

namely

I0(f)∩ J(f) 6= ∅, I∞(f)∩ J(f) 6= ∅, J(f) = ∂I0(f) = ∂I∞(f).
For this, Fang used Wiman-Valiron theory in the same way that Ere-
menko did for the entire case.

1.4 structure of the thesis

The escaping set of transcendental entire functions has been widely

studied in recent years. However, there were very few results on the

escaping set of transcendental self-maps of C∗ and they only con-

cerned points in the subsets I0(f) and I∞(f) of I(f), which consists of

points that accumulate at {0,∞} in any possible way. The goal of this

thesis is to study the escaping set of transcendental self-maps of C∗

in greater detail and extend the recent research on the escaping set of

transcendental entire functions to this class of functions.

In Chapter 2, we introduce the notion of essential itinerary of a point

z ∈ I(f) for a transcendental self-map f of C∗, which is a sequence

e ∈ {0,∞}N0 that describes how the orbit of z accumulates to {0,∞}.

Then, for every sequence e ∈ {0,∞}N0 , we define a completely in-

variant set Ie(f) ⊆ I(f) that consists of all the points whose essen-

tial itinerary is, eventually, σn(e) for some n ∈ N0, where σ is the

Bernoulli shift map. Any two such sets are either equal or disjoint.

Thus, we obtain a partition of I(f) into uncountably many disjoint
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sets of the form Ie(f) for some e ∈ {0,∞}N0 . Note that the sets I0(f)

and I∞(f) correspond to the cases where e is the constant sequence 0

and∞, respectively.

We prove the analogues of Eremenko’s properties for each of the

sets Ie(f), e ∈ {0,∞}N0 ; namely, we show that, for each sequence

e ∈ {0,∞}N0 , Ie(f) ∩ J(f) 6= ∅, J(f) = ∂Ie(f) and all the components

of the set Ie(f) are unbounded in C∗. Note that, in particular, this

means that there is an uncountable collection of disjoint sets whose

boundary is the Julia set.

To that end, for each sequence e ∈ {0,∞}N0 , we introduce the fast

escaping set with essential itinerary e of a transcendental self-map f

of C∗, Ae(f) ⊆ Ie(f), combining the iterates of the maximum and min-

imum modulus functions. We also adapt the construction of annular

itineraries from [RS15], which allows us to construct fast escaping

points, and also points that have almost every admissible itinerary

with respect to an annular partition {An}n∈Z defined using the iter-

ates of the maximum and minimum modulus functions.

In Chapter 3, we focus on the escaping points in the Julia sets of

transcendental self-maps of C∗. We introduce the class B∗ of transcen-

dental self-maps of C∗ of bounded type, and prove that, for functions

f ∈ B∗, we have I(f) ⊆ J(f). We show that finite order functions in C∗

are of the form f(z) = zn exp(P(z) +Q(1/z)) where n ∈ Z and P,Q

are polynomials, and hence belong to the class B∗. We also show that

if g,h ∈ B, the Eremenko-Lyubich class of transcendental entire func-

tions, then the function f(z) = exp(g(z) + h(1/z)) is in B∗. We adapt

the techniques from [RRRS11] to prove that, for finite compositions

of transcendental self-maps of C∗ of finite order, every point in I(f)

can be joined to zero or infinity by a ray tail (this generalises the work

done in my masters thesis [Mar11] which relates to the special sub-

sets I0(f) and I∞(f) of I(f)). In particular, if a transcendental entire

function is the lift of such a function, it follows that points whose real

parts escape can be joined to infinity by a ray tail; note that these func-

tions are not in the class B. We also prove that all periodic external

addresses correspond to a non-empty dynamic ray that lands. Finally,

we show that for every sequence e ∈ {0,∞}N0 , the set Ie(f) contains a

Cantor bouquet and, in particular, uncountably many ray tails.

In Chapter 4, we focus on the escaping points in the Fatou set of

transcendental self-maps of C∗. We provide the first explicit examples
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of transcendental self-maps of the punctured plane with a wandering

domain and also with a Baker domain. In order to prove that our

example has a wandering domain, we prove a general result which

implies that a function has a bounded wandering domain and is of

independent interest. For every sequence e ∈ {0,∞}N0 , we use ap-

proximation theory to construct transcendental self-maps of C∗ with

wandering domains and, if e is periodic, with Baker domains in Ie(f).

We also construct transcendental entire and meromorphic functions

that are holomorphic self-maps of C∗ and have several types of escap-

ing Fatou components.

In the first paper concerning the iteration of holomorphic self-maps

of C∗, Rådström [Råd53] described his goal as follows:

The theory of iteration developed by Fatou and Julia is concerned with

rational and entire functions. What is the most general class of analytic

functions to which the main results of this theory can be extended?

In Chapter 5, we describe the works of Herring [Her95] and Bolsch

[Bol97] on the iteration of functions that are holomorphic outside a

small set of (generalised) essential singularities that are no longer

isolated. For instance, these classes of functions include the iterates of

transcendental meromorphic functions, that have infinite (countable)

sets of essential singularities, like f(z) = exp(tan z). Bolsch did not

study the escaping set of such functions, and Herring only considered

the subsets of the escaping set I(f,α) consisting of the points that

accumulate at a given essential singularity α of f. The author regards

this thesis as a step towards understanding the escaping set of more

general functions, and plans to work on the escaping set of these

classes of functions in the future.

In this direction, recently Nicks and Sixsmith [NS16] have adapted

our definition of the fast escaping set in C∗ to study the iteration

of quasiregular functions of punctured space, that is, quasiregular

functions f : Rd \ S → Rd \ S where d > 2 and S ⊆ Rd ∪ {∞} is a

finite set that coincides with the set of essential singularities of f.





2
T H E E S C A P I N G S E T

In this chapter we study the structure of the escaping set of transcen-

dental self-maps of C∗. We introduce the notion of essential itinerary

and prove the analogues of Eremenko’s properties. In particular, we

show that there is an uncountable collection of disjoint subsets of the

escaping set each of which has the Julia set as its boundary. We define

the fast escaping set for this class of functions by combining the iter-

ates of the maximum and minimum modulus functions. We also use

the maximum and minimum modulus functions to define an annular

partition of C∗ and then construct points with several types of annu-

lar itineraries with respect to that partition, including fast escaping

points but also arbitrarily slowly escaping points.

2.1 introduction and main results

Recall that, for transcendental self-maps of C∗, we define the escaping

set by

I(f) := {z ∈ C∗ : ω(z, f) ⊆ {0,∞}} ,

where ω(z, f) :=
⋂
n∈N {fk(z) : k > n} and the closure is taken in Ĉ.

The set I(f) contains points that escape to zero as well as to infinity,

defined as follows:

I0(f) := {z ∈ C∗ : fn(z)→ 0 as n→∞} ,

I∞(f) := {z ∈ C∗ : fn(z)→∞ as n→∞} .

The set I(f) also contains points that escape from C∗ by jumping in-

finitely many times between a neighbourhood of zero and a neigh-

bourhood of infinity. The sets I0(f) and I∞(f) were studied by Fang

[Fan98] who proved the analogues of Eremenko’s properties (I1) and

(I2) described in Section 1.2, namely that

I0(f)∩ J(f) 6= ∅, I∞(f)∩ J(f) 6= ∅ and J(f) = ∂I0(f) = ∂I∞(f),

23



24 the escaping set

by using Wiman-Valiron theory in the way that Eremenko did for

the entire case. But the full set of escaping points I(f) has not been

previously studied.

To classify the various types of escaping orbits we introduce the

following concept.

Definition 2.1 (Essential itinerary). Let f be a transcendental self-map

of C∗. We define the essential itinerary of a point z ∈ I(f) to be the

symbol sequence e = (en) ∈ {0,∞}N0 such that

en :=

 0, if |fn(z)| 6 1,

∞, if |fn(z)| > 1,

for all n ∈N.

We now introduce the set of points that escape with a particular

essential itinerary.

Definition 2.2 (Escaping set). For each sequence e ∈ {0,∞}N0 , the set

of escaping points whose essential itinerary is exactly e,

I0,0
e := {z ∈ I(f) : ∀n > 0, |fn(z)| > 1⇔ en =∞},

and, for `,k ∈N0, we define

I−`,ke := {z ∈ I(f) : ∀n > 0, |fn+`(z)|>1⇔ en+k=∞} = f−`
(
I0,0
σk(e)

(f)
)
,

where σ denotes the Bernoulli shift map. Finally, for e ∈ {0,∞}N0 , we

denote by Ie(f) the set of escaping points whose essential itinerary is,

eventually, a shift of e,

Ie(f) := {z ∈ I(f) : ∃`,k ∈N0, ∀n > 0, |fn+`(z)| > 1⇔ en+k =∞},

or, equivalently,

Ie(f) :=
⋃

`∈N0

⋃

k∈N0

I−`,ke (f) =
⋃

`∈N0

⋃

k∈N0

f−`
(
I0,0
σk(e)

(f)
)
.
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We introduce a notion of fast escaping set related to an essential

itinerary e, defined using the iterates of the maximum and minimum

modulus functions

M(r, f) := max
|z|=r

|f(z)| < +∞ and m(r, f) := min
|z|=r

|f(z)| > 0,

which are defined for r > 0.

Definition 2.3 (Fast escaping set). Let f be a transcendental self-map

of C∗. We define the fast escaping set with respect to the essential itinerary

e = (en) ∈ {0,∞}N0 , Ae(f), as follows. First, let R > 0 be sufficiently

large so that the sequence (Rn) defined by R0 := R, if e0 = ∞, or

R0 := 1/R, if e0 = 0, and, for n > 0,

• Rn := m(Rn−1), if en = 0,

• Rn :=M(Rn−1), if en =∞,

accumulates to {0,∞}. Then, A−`,0
e (f,R), ` ∈ Z, is defined to be the

set of z ∈ C∗ such that

• |fn+`(z)| 6 Rn, if en = 0,

• |fn+`(z)| > Rn, if en =∞,

for all n ∈ N0 such that n + ` ∈ N, where R > 0. For ` ∈ Z and

k ∈ N0, we put A−`,k
e (f,R) := A−`,0

σk(e)
(f,R) ⊆ I−`,ke (f). Finally, we

define

Ae(f) :=
⋃

`∈Z

⋃

k∈N0

A−`,k
e (f,R).

We denote by A(f) the fast escaping set of f, that is, the set of all points

that are fast escaping with respect to some essential itinerary.

The sets Ae(f), e ∈ {0,∞}N0 , and A(f) are independent of the value

of R > 0 used to define them provided that R is large enough, and

Ae(f) ⊆ Ie(f) (see Lemmas 2.14 and 2.16).

Observe that if f(z) = zn exp(g(z) + h(1/z)) with n ∈ Z and g,h

non-constant entire functions, then the behaviour of f in a neighbour-

hood of infinity depends mainly on that of the entire function gwhile

the behaviour near zero depends mainly on that of h.

We begin by proving an analogue of property (I1), namely that

Ie(f) ∩ J(f) and indeed Ae(f) ∩ J(f) are non-empty for any essential
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itinerary e. We follow the approach of Rippon and Stallard in [RS15]

where they proved the existence of points escaping to infinity at dif-

ferent rates by constructing points with different annular itineraries.

Theorem 2.4. Let f be a transcendental self-map of C∗. For each sequence

e ∈ {0,∞}N0 , we have Ae(f)∩ J(f) 6= ∅ and hence Ie(f)∩ J(f) 6= ∅.

Our notation for annular itineraries is as follows. Let R+ > 0 and

R− > 0 be, respectively, large enough and small enough such that, for

all r > R+, M(r) > r and, for all 0 < r < R−, we have m(r) < r. Then

define

A0 := A(R−,R+) = {z ∈ C∗ : R− 6 |z| 6 R+}

and the sequences of annuli

An := {z ∈ C∗ : Mn−1(R+) < |z| 6Mn(R+)}, for n > 0;

An := {z ∈ C∗ : m−n(R−) 6 |z| < m−n−1(R−)}, for n < 0.

Each point z ∈ I(f) has an associated annular itinerary (sn) ∈ ZN0

with respect to the partition {An}n∈Z such that fn(z) ∈ Asn for all

n ∈N0. We prove a covering result (see Theorem 2.18) which allows

us to construct orbits with certain annular itineraries, including the

ones listed in Theorem 2.6 below.

Remark 2.5. In this thesis we deal with two kinds of itineraries for

escaping points that should not be confused: essential itineraries

(en) ∈ {0,∞}N0 , which describe how an escaping point accumulates

to the two essential singularities, and annular itineraries (sn) ∈ ZN0 ,

which depend on the partition {An}n∈Z. For large values of n, the

symbols en = 0 and en = ∞ correspond, respectively, to negative

and positive terms sn in the annular itinerary.

Theorem 2.6. Let f be a transcendental self-map of C∗. Given an annular

partition {An}n∈Z defined as above with R+, 1/R− sufficiently large, we

can construct points with the following itineraries:

• fast escaping itineraries;

• periodic itineraries;

• bounded itineraries (uncountably many);

• unbounded non-escaping itineraries (uncountably many);

• arbitrarily slowly escaping itineraries.
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Note that our proof uses a different annular covering lemma to

those used in [RS15] and, in this setting, we are able to avoid the ex-

ceptional sets which feature in [RS15, Theorem 1.1 and Theorem 1.2].

We now state a result in the spirit of property (I2) but for any es-

sential itinerary e. For the special cases of I0(f) and I∞(f), this is due

to Fang and it also follows from the results in [BDH01].

Theorem 2.7. Let f be a transcendental self-map of C∗. For each sequence

e ∈ {0,∞}N0 , we have J(f) = ∂Ae(f) = ∂Ie(f). Also J(f) = ∂A(f) =

∂I(f).
Since there are uncountably many non-equivalent essential itine-

raries (see Remark 2.13(ii)), this means, in particular, that there is an

uncountable collection of disjoint sets, each of which has the Julia set

as its boundary.

We also prove the analogue of property (I3) for any essential itine-

rary. When we say that a set X is unbounded in C∗, we mean that

X̂∩ {0,∞} 6= ∅, where X̂ is the closure of X in Ĉ.

Theorem 2.8. Let f be a transcendental self-map of C∗. For each sequence

e ∈ {0,∞}N0 , the connected components of Ie(f) are unbounded in C∗, and

hence the connected components of I(f) are unbounded in C∗.

Finally we show that, as for transcendental entire functions, the

components of A(f) are all unbounded.

Theorem 2.9. Let f be a transcendental self-map of C∗. For each sequence

e ∈ {0,∞}N0 , the connected components of Ae(f) are unbounded, and hence

the connected components of A(f) are unbounded.

Structure of the chapter. In Section 2.2 we prove the basic proper-

ties of M(r) and m(r) that we are going to need later. The discussion

about the notions of essential itinerary and the fast escaping set is in

Section 2.3. Section 2.4 is devoted to the construction of the annular

itineraries and the proof of Theorem 2.6. The main result in this sec-

tion, Theorem 2.18, in fact allows you to construct many more types

of orbits than the ones listed in the statement of Theorem 2.6. In Sec-

tion 2.5 we prove Theorems 2.4, 2.7 and 2.8 which are the analogues

of Eremenko’s properties (I1), (I2) and (I3) in C∗. In doing so we also

show that the components of the fast escaping set are unbounded

(see Theorem 2.9), and that if a Fatou component U intersects the fast

escaping set A(f) then U ⊆ A(f) (see Theorem 2.21).
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2.2 the maximum and minimum modulus functions

Before proving the annular covering results, we need some basic prop-

erties of the maximum and minimum modulus functions for transcen-

dental self-maps of C∗. Note that we will not usually make explicit

the dependence on f and we will just write M(r) and m(r). As a con-

sequence of the maximum modulus principle, both M(r) and m(r)

are unimodal functions. In the following lemma we summarise their

main properties. Throughout this section we will only prove the state-

ments for M(r) when r → +∞, and the other three statements for

M(r) when r → 0 and for m(r) when r → +∞ and r → 0 can be

deduced from these by using the fact that if f̌(z) = f(1/z) then

M(r, f) =M(1/r, f̌) =
1

m(r, 1/f)
=

1

m(1/r, 1/f̌)
.

Lemma 2.10. Let f be a transcendental self-map of C∗. The functions M(r)

and m(r) satisfy the following properties:

(i)
logM(r)

log r
→ +∞,

logm(r)

log r
→ −∞ as r→ +∞, and

logM(r)

log r
→ −∞,

logm(r)

log r
→ +∞ as r→ 0;

(ii) logM(r) and − logm(r) are convex functions of log r;

(iii) there exists R∞ = R∞(f) > 0 such that

M(rk) >M(r)k, m(rk) 6 m(r)k for every r > R∞, k > 1,

and there exists R0 = R0(f) > 0 such that

M(rk) >M(r)k, m(rk) 6 m(r)k for every r 6 R0, k > 1;

(iv) for k > 1,
M(kr)

M(r)
→ +∞,

m(kr)

m(r)
→ 0 as r→ +∞, and

M(kr)

M(r)
→ 0,

m(kr)

m(r)
→ +∞ as r→ 0.

Proof. (i) This property follows from the fact that

logM(r)

log r
→ +∞ as r→ +∞
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for transcendental entire functions (see [Lev96, Theorem 1 on p. 3])

using that f(z) = zn exp
(
g(z) + h(1/z)

)
, where n ∈ Z and g,h are

non-constant entire functions (see (1.1)), so

lim
r→+∞ logM(r, f)

log r
= lim
r→+∞ logM(r, f∞)

log r
= +∞,

where f∞(z) = zn expg(z).

(ii) This means that φ(t) = logM(exp t) is a convex function of t

and the property is usually referred to as the Hadamard three circles

theorem, see [Ahl53]. Observe that in the hypothesis of that theorem

you only need that the function is analytic in an annulus r1 < |z| < r2

and it therefore applies to holomorphic self-maps of C∗.

(iii) See [RS09, Lemma 2.2] or [BRS13, Theorem 2.2] for the anal-

ogous result for transcendental entire functions. We reproduce the

proof here for completeness.

Let φ(t) = logM(exp t). By property (i), φ(t)/t→ +∞ as t→ +∞,

so we can take t1 > t0 > 0 large enough that

φ(t0) > 0 and
φ(t)

t
>
φ(t0)

t0
for t > t1.

Let φ ′ denote the right derivative of φ. Then, by property (ii) and the

previous inequality,

φ ′(t) >
φ(t) −φ(t0)

t− t0
>
φ(t)

t
for t > t1.

Hence φ(t)/t is an increasing function for t > t1. Thus, if k > 1, then

φ(kt)

kt
>
φ(t)

t
, that is, φ(kt) > kφ(t),

for t > t1. Taking exponentials on both sides we get the result, with

R∞ = exp t1.

(iv) For every value of r > 1 we can write kr = rc, where

c = c(r) =
logk+ log r

log r
> 1.

By property (iii), for r large enough,

M(kr)

M(r)
=
M(rc)

M(r)
>
M(r)c

M(r)
=M(r)c−1
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and then, using property (i),

log
(
M(r)c−1

)
= (c− 1) logM(r) =

logk
log r

logM(r)→ +∞ as r→ +∞,

so
M(kr)

M(r)
→ +∞ as r→ +∞. �

The following result compares the iterates of M(r) and m(r) with

those of their ‘relaxed’ versions µ(r) = εM(r) and ν(r) = m(r)/ε,

where 0 < ε < 1. The analogous property for entire functions was

used by Rippon and Stallard in [RS12, Theorem 2.9].

Lemma 2.11. Let f be a transcendental self-map of C∗, and define

µ(r) = εM(r) and ν(r) = m(r)/ε, where 0 < ε < 1. Then there exists

R1(f, ε) > 0 such that, for r > R1(f, ε),

µn(r) >Mn(εr) and νn(r) 6 mn(εr) for n > 0,

and, for 0 < r 6 1/R1(f, ε),

µn(r) >Mn(r/ε) and νn(r) 6 mn(r/ε) for n > 0.

Proof. Let R be large enough that M(εr) > εr for all r > R. By pro-

perty (iv) in Lemma 2.10, with k = 1/ε, there is R ′ > R such that,

M(r)

M(εr)
>
1

ε2
for r > R ′,

and therefore

µ(r) = εM(r) >
1

ε
M(εr) > r for r > R ′.

Hence, µn(r) > Mn(εr) for all n ∈ N and r > R ′. If R ′′ > 0 is

the constant required for the corresponding inequality with m(r)

and ν(r), then we define S := max{R ′,R ′′}. If S ′ > 0 is the constant

such that the second pair of inequalities hold for 0 < r < S ′, then we

put R1(f, ε) := max{S, 1/S ′}. �

Finally let us prove a property of M(r) and m(r) that will be used

later in the construction of the annular itineraries.
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Lemma 2.12. Let f be a transcendental self-map of C∗, and define

µ(r) = εM(r) and ν(r) = m(r)/ε, where 0 < ε < 1. Then there exists

R2(f, ε) > 0 such that, for r > R2(f, ε),

Mn−1(r) < εµn(r) for n > 0,

and, for 0 < r 6 1/R2(f, ε),

mn−1(r) > νn(r)/ε for n > 0.

Proof. Consider µ̃(r) = ε2M(r) and let R1(f, ε2) > 0 be the constant

defined in Lemma 2.11. Then

µ̃n(r) >Mn(ε2r)

for all n ∈N and r > R1(f, ε2). Now let R > R1(f, ε2) be large enough

that r 6 M(ε2r) for all r > R. Then, applying Mn−1 to both sides of

the inequality r 6M(ε2r), we get

Mn−1(r) 6Mn(ε2r) 6 µ̃n(r)

for r > R. Hence,

Mn−1(r) 6 µ̃n(r) = ε2M
(
µ̃n−1(r)

)
< ε2M

(
µn−1(r)

)
= εµn(r)

for all n ∈ N and r > R. If R ′ > 0 is the constant required for the

corresponding inequality withm(r) and ν(r), then the required result

holds with R2(f, ε) := max{R, 1/R ′}. �

2.3 the escaping and fast escaping sets

In this section we discuss some basic properties of the escaping and

fast escaping sets of transcendental self-maps of C∗. Recall that in

Definition 2.1 we defined the essential itinerary of an escaping point

z ∈ I(f) to be the symbol sequence e = (en) ∈ {0,∞}N0 such that

en =

 0, if |fn(z)| 6 1,

∞, if |fn(z)| > 1,
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and Ie(f) denotes the set of points whose essential itinerary is, even-

tually, a shift of e, that is,

Ie(f) := {z ∈ I(f) : ∃`,k ∈N0, ∀n ∈N0, |fn+`(z)| > 1 ⇔ en+k =∞}.

Remark 2.13. (i) Observe that we used the unit circle to define the

boundaries of neighbourhoods of zero and infinity but we could

have used any circle {z : |z| = R} with R > 0, because the orbits

of escaping points are eventually as close as we want to the

essential singularities.

(ii) For e 6= e ′, the sets Ie(f) and Ie ′(f) are either equal or disjoint.

In fact, we have Ie(f) = Ie ′(f) if and only if σm(e) = σn(e ′)

for some m,n ∈ N0, where σ denotes the Bernoulli shift map.

In this case we say that e is equivalent to e ′ and write e ∼= e ′.

However, it is easy to see that there are uncountably many non-

equivalent essential itineraries.

(iii) We use the notation e0e1 . . . ep−1, p ∈ N0, to denote the peri-

odic sequence of period p which consists of e0e1 . . . ep−1
repeated infinitely often. This notation will be used for annu-

lar itineraries as well.

Recall that in Definition 2.3 we defined the fast escaping set, A(f),

by iterating a combination of M(r) and m(r) on R0 > 0 following an

essential itinerary e. In order for this set to be well defined, we first

need to guarantee that the sequence (Rn) escapes to {0,+∞} provided

that R0 is sufficiently large, if e0 =∞, or sufficiently small, if e0 = 0.

Lemma 2.14. Let f be a transcendental self-map of C∗. There is R(f) > 0 so

large that, for every e ∈ {0,∞}N, if the sequence (Rn) is as in Definition 2.3,

where R > R(f), then

(i) M(r) > r2 and 1/m(r) > r2, if r > R(f), and 1/M(r) < r2 and

m(r) < r2, if 0 < r < 1/R(f), and hence Rn → {0,+∞} as n→∞;

(ii) if R ′ > R and (R ′n) is the sequence defined using R ′ as in Definition 2.3,

then, for all n ∈N0, R ′n > Rn, if en =∞, and R ′n < Rn, if en = 0.

It follows that Ae(f) ⊆ Ie(f).

Proof. Since M(r) and 1/m(r) grow faster than any power of r (see

Lemma 2.10(i)), we can take R(f) > 0 large enough that (i) holds.
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Moreover, by Lemma 2.10(ii), we can choose R(f) sufficiently large so

that, in addition,

• the function M(r) is monotonically increasing on (R(f),+∞)

and monotonically decreasing on (0, 1/R(f));

• the function m(r) is monotonically decreasing on (R(f),+∞)

and monotonically increasing on (0, 1/R(f)).

Thus, if R ′ > R, the sequence (R ′n) will beat the sequence (Rn), that is,

for all n ∈N0, R ′n > Rn, if en =∞, and R ′n < Rn, if en = 0. �

Let R > R(f), where R(f) is the constant from Lemma 2.14. The fast

escaping set with respect to the essential itinerary e = (en) ∈ {0,∞}N0

was defined in Section 2.1 to be

Ae(f) :=
⋃

`∈Z

⋃

k∈N0

A−`,k
e (f,R),

where the set A−`,k
e (f,R), called a level of Ae(f), consists of the points

z ∈ C∗ such that,

• |fn+`(z)| 6 Rn, if en+k = 0,

• |fn+`(z)| > Rn, if en+k =∞,

for all n ∈ N0 such that n+ ` ∈ N0. For A−`,k
e (f,R), the sequence

(Rn) is defined by R0 := R, if ek = ∞, and R0 := 1/R > m(R), if

ek = 0, and, for n > 0,

• Rn := m(Rn−1), if en+k = 0,

• Rn :=M(Rn−1), if en+k =∞.

Observe that the sets A−`,k
e (f,R) = A−`,0

σk(e)
(f,R) are closed. Also,

note that, in these definitions, we could have chosen 0 < R < 1/R(f)

and then taken R0 = R, if ek = 0, and R0 = 1/R < M(R), if ek =∞.

Lemma 2.15. Let f be a transcendental self-map of C∗, and let e ∈ {0,∞}N0 ,

R > R(f), where R(f) is as defined in Lemma 2.14, ` ∈ Z and k ∈N0. Then

we have A−`,k
e (f,R) ⊆ A−`−1,k+1

e (f,R) and hence

Ae(f) =
⋃

`∈N0

⋃

k∈N0

A−`,k
e (f,R).
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Proof. Let (Rn) be the sequence defined by R0 := R, if ek = ∞,

and R0 := 1/R, if ek = 0, and, for n > 0,

• Rn := m(Rn−1), if en+k = 0,

• Rn :=M(Rn−1), if en+k =∞,

and let (R̃n) be the sequence defined by R̃0 := R, if ek+1 = ∞,

and R̃0 := 1/R, if ek+1 = 0, and, for n > 0,

• R̃n := m(R̃n−1), if en+k+1 = 0,

• R̃n :=M(R̃n−1), if en+k+1 =∞.

By Lemma 2.14(i) and (ii), Rn+1 > R̃n > R(f), if en+k+1 = ∞, and

Rn+1 < R̃n < 1/R(f), if en+k+1 = 0, for all n ∈N0.

Suppose that z0 ∈ A−`,k
e (f,R); then

• |fn+`(z0)| 6 Rn, if en+k = 0,

• |fn+`(z0)| > Rn, if en+k =∞,

for all n ∈N0 such that n+ ` ∈N0, and therefore

• |fn+`+1(z0)| 6 Rn+1 < R̃n, if en+k+1 = 0,

• |fn+`+1(z0)| > Rn+1 > R̃n, if en+k+1 =∞,

for all n ∈N0 such that n+ `+1 ∈N0, and thus z0 ∈ A−`−1,k+1
e (f,R).

Observe that if ` < 0, then points in both of the sets A−`,k
e (f,R)

and A−`−1,k+1
e (f,R) must satisfy respectively the conditions above

for each iterate fn(z0), n ∈ N0. If ` > 0, then points in A−`,k
e (f,R)

must satisfy a condition on f`(z0) while for points in A−`−1,k+1
e (f,R),

the iterate f`(z0) is arbitrary.

Finally, if ` < 0, then A−`,k
e (f,R) ⊆ A0,k−`

e (f,R) and, therefore, we

can define Ae(f) using only the level sets A−`,k
e (f,R) with ` ∈N0. �

The following lemma shows that the setsAe(f) (and hence alsoA(f))

are independent of R, as mentioned in Section 2.1, and completely in-

variant under f. The sets Ae(f) are also invariant under shifts of e;

that is, Aσ(e)(f) = Ae(f).

Lemma 2.16. Let f be a transcendental self-map of C∗. For each sequence

e ∈ {0,∞}N0 , the set Ae(f) is completely invariant under f, shift invariant

and independent of R, provided that R > R(f), where R(f) is the constant

from Lemma 2.14. Hence the set A(f) is completely invariant and indepen-

dent of R.
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Proof. We first show that the set Ae(f) is completely invariant under f,

that is,

f
(
Ae(f)

)
⊆ Ae(f) and f−1

(
Ae(f)

)
⊆ Ae(f).

The left-hand inclusion holds because f
(
A−`,k
e (f,R)

)
⊆ A−`+1,k

e (f,R),

which follows easily from the definition of the levels of Ae(f). To

prove the right-hand inclusion, we note that, by Lemma 2.15, we can

suppose that ` ∈N and in that case

f−1
(
A−`,k
e (f,R)

)
= A−`−1,k

e (f,R).

We now show that the set Ae(f) is shift invariant, that is, we prove

that Aσ(e)(f) = Ae(f). First,

Aσ(e)(f) =
⋃

`∈Z

⋃

k∈N0

A−`,k
σ(e)(f,R) =

⋃

`∈Z

⋃

k∈N0

A−`,k+1
e (f,R)

=
⋃

`∈Z

⋃

k>1

A−`,k
e (f,R) ⊆ Ae(f).

In the other direction, by Lemma 2.15,

Ae(f) =
⋃

`∈Z

⋃

k∈N0

A−`,k
e (f,R) ⊆

⋃

`∈Z

⋃

k∈N0

A−`−1,k+1
e (f,R) = Aσ(e)(f).

We give the details that Ae(f) is independent of R for the case

where there exists a sequence (nk) such that Rnk → +∞ as k → ∞.

Otherwise Rn → 0 as n→∞ and the argument is similar.

Suppose thatR ′ > R > R(f) and let (Rn) and (R ′n) be the sequences gi-

ven by Definition 2.3 starting withR andR ′, respectively. By Lemma 2.14,

we have that R ′n → {0,+∞} as n → ∞ and A−`,k
e (f,R ′) ⊆ A−`,k

e (f,R)

for ` ∈ Z, k ∈N0. Hence,

⋃

`∈Z

⋃

k∈N0

A−`,k
e (f,R ′) ⊆

⋃

`∈Z

⋃

k∈N0

A−`,k
e (f,R).

In the other direction, we use the fact that we have assumed that

there is a sequence (nk) such that Rnk → +∞ as k→∞. Let m ∈N0
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be such that Rm > R ′. If ẽ is the symbol sequence e preceded by the

string e0 . . . em−1, then

A−`,k
e (f,R ′) ⊇ A−`,k

e (f,Rm) = A−`,k+m
ẽ (f,Rm) ⊇ A−(`−m),k

ẽ (f,R)

and, since σm(ẽ) = e, by the shift invariance property, we have

⋃

`∈Z

⋃

k∈N0

A−`,k
e (f,R ′) ⊇

⋃

`∈Z

⋃

k∈N0

A
−(`−m),k
ẽ (f,R) ⊇

⋃

`∈Z

⋃

k∈N0

A−`,k
e (f,R)

Therefore Ae(f) is independent of the value of R used to define it. �

SinceAe(f) is shift invariant, if e, e ′ ∈ {0,∞}N0 andAe ′(f)∩ Ie(f) 6= ∅,
then Ae ′(f) = Ae(f), by Remark 2.13(ii).

We will continue studying the dynamical and topological proper-

ties of A(f) in Section 2.5.

2.4 annular itineraries for C∗

In this section, we study annular itineraries for our class of functions.

By Lemma 2.10, there exist R+ , R− > 0, respectively, large and small

enough such that Mn(R+) → +∞ and mn(R−) → 0 as n → ∞.

We define A0 := A(R− , R+) and

An := {z ∈ C∗ : Mn−1(R+) < |z | 6 Mn(R+)} for n > 0 ,

An := {z ∈ C∗ : m−n(R−) 6 |z | < m−n−1(R−)} for n < 0 ,

so that {An }n∈Z is a partition of C∗. Each point z ∈ I(f) has an

associated annular itinerary (sn) ∈ ZN0 such that fn(z) ∈ Asn for

all n ∈ N0 . Note that this sequence depends on the values R− and

R+ used to define the partition. By construction, it follows from the

maximum modulus principle that

sn+1 6 sn + 1 , if sn > 0 ,

sn+1 > sn − 1 , if sn < 0 .

To create escaping orbits with certain types of annular itineraries we

will use the following version of a well-known result.
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Lemma 2.17. Let {Cn }n∈N0
be compact sets in C∗ and f : C∗ → C∗ be

a continuous function such that

f(Cn) ⊇ Cn+1 for n ∈ N0 .

Then there exists ζ such that fn(ζ) ∈ Cn for n ∈N0.

In our construction, the compact sets {Cn}n∈N0
will be compact

annuli Bn ⊆ An with some covering properties. More precisely, we

will have that Bn ⊆ intAn for n ∈ Z \ {−1, 0, 1}.

Theorem 2.18. Let f be a transcendental self-map of C∗. If {An}n∈Z is

the set of annuli defined above, then there exists a sequence of closed annuli

{Bn}n∈Z such that Bn ⊆ An for all n ∈ Z, with the following covering

properties:

• if n > 0, there exists an integer kn 6 1 such that f(Bn) ⊇ Bk

for kn 6 k 6 n+ 1,

• if n < 0, there exists an integer kn > −1 such that f(Bn) ⊇ Bk

for n− 1 6 k 6 kn,

and |km| > |kn| when |m| > |n| and m,n have the same sign. Moreover,

|km|→∞ as |m|→∞.

Note that the sequence (km) depends on the growth of the function

m(r) as r → +∞ (when m > 0) and on that of M(r) as r → 0 (when

m < 0).

We compare Theorem 2.18 with the corresponding result for trans-

cendental entire functions [RS15, Theorem 1.1]. In that setting, there

is a subsequence (nj) such that f(Bnj) ⊇ Bk for 0 6 k 6 nj + 1 with

at most one exception while, in our case, all f(Bn) cover the other Bk
with 0 < k 6 n+ 1 if n > 0. Also, the proof in [RS15] is significantly

more involved than ours due to the possible presence of zeros of the

function and multiply connected Fatou components, and it requires

the use of several new covering lemmas.

In order to prove Theorem 2.18, we use the following recent cover-

ing result due to Bergweiler, Rippon and Stallard (see [BRS13, Theo-

rem 3.3]). Here [z,w]Ω stands for the hyperbolic distance between the

points z and w relative to Ω, where Ω is a hyperbolic domain; that is,

Ω has at least two finite boundary points.
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Lemma 2.19. There exists an absolute constant δ > 0 such that if R ′ > R

and f : A(R,R ′)→ C∗ is analytic, then, for all z1, z2 ∈ A(R,R ′) such that

[z1, z2]A(R,R ′) < δ and |f(z2)| > 2|f(z1)|,

we have

f
(
A(R,R ′)

)
⊇ A

(
|f(z1)|, |f(z2)|

)
.

Now we prove Theorem 2.18.

Proof of Theorem 2.18. IfA(ε) = A(ε, 1ε), 0 < ε < 1, and C = {z : |z| = 1},

then the hyperbolic length of C with respect to A(ε) is

`A(ε)(C) =
π2

log(1/ε)

(see [BM07, Example 12.1]). Since the hyperbolic length is invari-

ant under conformal transformations, the hyperbolic length of the

circle {z : |z| = r} with respect to A(εr, 1εr) is also −π2/ log ε. We

choose 0 < ε < 1 to be sufficiently small that

π2

log(1/ε)
< δ,

where δ is the absolute constant of Lemma 2.19.

Let µ(r) = εM(r) and let R2(f, ε) be the constant in Lemma 2.12.

Then we claim that there exists R0 = R0(f, ε) > R2(f, ε) > 0 such that

if R+ > R0, then

Mn−1(R+) < εµ
n(R+) < µ

n(R+) <
1

ε
µn(R+) < M

n(R+) (2.1)

for all n > 1 (see Figure 3). Note that if n = 1 the first three in-

equalities in (2.1) hold while the last one becomes an equality. Indeed

Lemma 2.12 ensures that the first inequality is satisfied. The two mid-

dle inequalities are clear because 0 < ε < 1, and the last one is due

to the fact that the function µ(r) is increasing for large values of r

and µn−1(R+) < Mn−1(R+).

Let B0 := A0 and, for n > 0, define

Bn := A
(
εµn(R+), 1εµ

n(R+)
)
⊆ An.
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f

f

z2

z1

f(z2)

Mn(R+) Mn+1(R+)Mn−1(R+)

µn(R+) µn+1(R+)

Bn Bn+1

Figure 3: Construction in the proof of Theorem 2.18.

The same kind of argument can be used to construct R− > 0 and

annuli Bn for n < 0 in an analogous way, using the iterates of the

function ν(r) = m(r)/ε with initial term r = R−.

Take z1, z2 ∈ Bn such that |z1| = |z2| = µ
n(R+) and

|f(z1)| = m
(
µn(R+)

)
, |f(z2)| =M

(
µn(R+)

)
.

This is possible by (2.1). Our choice of ε ensures that [z1, z2]Bn < δ

and, for R+ large enough, the condition |f(z2)| > 2|f(z1)| is trivially

satisfied.

Finally, observe that if R+ is large enough, we can make sure that,

for every n > 0, m
(
µn(R+)

)
< R+. Then Lemma 2.19 tells us that

f(Bn)⊇ A
(
|f(z1)|, |f(z2)|

)
= A

(
m
(
µn(R+)

)
,M
(
µn(R+)

))

⊇ A
(
R+, 1εµ

n+1(R+)
)
⊇
n+1⋃

j=kn

Bj

with kn 6 1, as required for the case n > 0. The proof that Bn satisfies

the corresponding covering properties for n < 0 is analogous. �

Remark 2.20. Note that B−1,B0 and B1 are the only annuli in {Bn}n∈Z

that are not compactly contained in the corresponding annulus An
because we have µ(R+)/ε =M(R+). In our construction B0 is excep-

tional because f(B0) does not necessarily cover any Bn (not even it-

self) whereas all the others at least cover themselves and the following

one.



40 the escaping set

Theorem 2.6 describes what types of orbits can be found using the

covering properties of the annuli Bn that we just constructed.

Proof of Theorem 2.6. By Lemma 2.17, if f(Bsn) ⊇ Bsn+1 , for all n > 0,

then there is a point z0 ∈ Bs0 ⊆ As0 such that fn(z0) ∈ Bsn ⊆ Asn ,

for all n > 0.

We will now describe sequences that produce the various types of

annular itinerary listed in Theorem 2.6, with diagrams to illustrate

each of these.

• The partition {An}n∈Z is convenient for describing fast escaping

points that escape to one of the essential singularities. These

correspond to annular itineraries where sn+1 = sn+ 1, if e =∞,

or sn+1 = sn − 1, if e = 0, for n arbitrarily large.

· · · A−2

ftt
A−1

fss
A0 A1

f **
A2

f ** · · ·

• In order to construct a point with a periodic annular itinerary

s = s1s2 · · · sn we require that si+1 ∈ {ki, . . . , si + 1} \ {0},

if si+1 > 0, or si+1 ∈ {si − 1, . . . ,ki} \ {0}, if si+1 < 0, for

all 1 6 i 6 n.

An2−2

f

((
An2−1

f
mm An2

f
nn A0 An1

f ..
An1+1

f --
An1+2

f

hh

• We can construct bounded itineraries whose entries are all sn
or sn+1 that are not periodic as follows. We can always choose

to stay in the same annulus (every Bn covers itself) or go one

level up or down.

An

f
&&

f

..
An+1

f

ff f~~

The claim that there are uncountably many such itineraries fol-

lows from the fact that at each step we always have two choices.

Thus there is a bijection between this set and 2N0 ∼= [0, 1].



2.5 eremenko’s properties 41

• Unbounded non-escaping itineraries are those for which there

is a sequence (nk) such that |snk | → ∞ as k → ∞ and another

sequence (mk) such that for all k ∈ N0, |mk| < R for some

R > 0.

An

f
&&

f

��

f

��
An+1

f

��

f

��

f

ff An+2

f

cc

f

��
An+3

f

cc · · ·

We are able to construct uncountably many such itineraries be-

cause we can always map to the next annulus or map back to

either B1 or B−1.

• Let e ∈ {0,∞}N0 and (rn) be a sequence of positive real numbers

such that

rn > 1⇔ en =∞ for all n ∈N0,

and

| log rn|→ +∞ as n→∞.

Then we can construct a point z0 ∈ Ie(f) such that |fn(z0)| < rn,

if en =∞, or |fn(z0)| > rn, if en = 0, for all n ∈N0 sufficiently

large. To do so, note that each Bn covers itself, so we can choose

to stay in Bn, n > 0, for as many iterates as we need so that

M
(
µn(R+)

)
< rn and then we can choose to jump to Bn+1.

An
f //

f��
An+1

f //
f��

An+2
f //

f��
An+3

f //
f��

· · ·

This concludes the proof of Theorem 2.6. �

2.5 eremenko’s properties

In the previous section, we proved the existence of points that escape

as fast as possible to infinity and to zero but we are interested in hav-

ing general fast escaping points in the sense of Definition 2.3, which

includes points that jump infinitely many times between a neighbour-

hood of infinity and a neighbourhood of zero. For this, we will mo-
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dify the construction used to prove Theorem 2.18 in order to mix the

iterates of M(r) and m(r).

Proof of Theorem 2.4. Let e = (en) ∈ {0,∞}N0 be an essential itinerary

and let R0 > 0 be chosen sufficiently large or small according to

whether e0 =∞ or e0 = 0. Consider the sequence given by, for n > 0,

• Rn =M(Rn−1), if en =∞,

• Rn = m(Rn−1), if en = 0.

We will show that there is a point z such that, for all n ∈N0,

• |fn(z)| > Rn, if en =∞,

• |fn(z)| 6 Rn, if en = 0.

Hence z ∈ Ae(f) (note that here ` = k = 0). For this we will also

require an auxiliary sequence (R̃n) that combines the iterates

of µ(r) = εM(r) and ν(r) = m(r)/ε, where 0 < ε < 1, according

to the essential itinerary e ∈ {0,∞}N. Let R̃0 = µ(R0) > R0, if e0 =∞,

and R̃0 = ν(R0) < R0, if e0 = 0, so that the sequence (R̃n) has a head

start on (Rn). For n > 0, let

• R̃n = µ(R̃n−1), if en =∞,

• R̃n = ν(R̃n−1), if en = 0.

Lemma 2.14 guarantees that if R0 > R(f) or R0 < 1/R(f), then the

sequence (Rn) accumulates to {0,∞} according to the essential itine-

rary e. For 0 < ε < 1, let R(f, ε) > R(f) be such that, for instance,

εr2 > r3/2 for all r > R(f, ε) and r2/ε < r3/2 for all 0 < r < 1/R(f, ε).

Then the sequence (R̃n) also escapes provided that R0 > R(f, ε) or

0 < R0 < 1/R(f, ε).

Proceeding in the same way as in the proof of Theorem 2.18, we

define a sequence of closed annuli (Bn) such that f(Bn) ⊇ Bn+1.

First, for n > 0, we put

Bn := A
(
εR̃n, R̃n/ε

)
=

A
(
ε2M(R̃n−1), M(R̃n−1)

)
, if en =∞,

A
(
m(R̃n−1), m(R̃n−1)/ε

2
)
, if en = 0,

(2.2)
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where 0 < ε < 1 has been chosen suitably small. Next we argue as in

Lemma 2.12 to combine the iterates of M(r) and m(r), assuming that

the value of r is large enough or small enough, to obtain, for n > 0,

Rn < ε
2M(R̃n−1), if en =∞,

m(R̃n−1)/ε
2 < Rn, if en = 0.

(2.3)

We prove (2.3) by induction. The base case n = 1 holds provided that

the number R0 (and hence R1) is large enough, or small enough:

R1 < ε
2M(R̃0) = ε

2M(εR1), if e1 =∞ and e0 =∞,

R1 < ε
2M(R̃0) = ε

2M(R1/ε), if e1 =∞ and e0 = 0,

m(εR1)/ε
2 = m(R̃0)/ε

2 < R1, if e1 = 0 and e0 =∞,

m(R1/ε)/ε
2 = m(R̃0)/ε

2 < R1, if e1 = 0 and e0 = 0.

Let en =∞ and en+1 = 0, and suppose Rn < ε2M(R̃n−1). Then,

m(R̃n) = m
(
εM(R̃n−1)

)
< ε2m

(
ε2M(R̃n−1)

)
< ε2m(Rn) = ε

2Rn+1,

as required. Note that the first inequality here is due to the fact that

m(r) < ε2m(εr) for 0 < ε < 1 and r > 0 sufficiently large (see

Lemma 2.10(iv)), while in the second inequality we use the induction

hypothesis. The other three possible combinations of en and en+1

follow similarly.

Thus, we have, for n > 0, by (2.2) and (2.3),

Bn ⊆ A
(
Rn, M(Rn)

)
⊆ C \D(0,Rn), if en =∞,

Bn ⊆ A
(
m(Rn), Rn

)
⊆ D(0,Rn), if en = 0.

Thus, taking z1, z2 ∈ Bn such that |z1| = |z2| = R̃n and

|f(z1)| = m(R̃n) and |f(z2)| =M(R̃n),

and applying Lemma 2.19 we deduce that f(Bn) always covers Bn+1
and therefore, by Lemma 2.17, Ae(f) 6= ∅.

Finally, Baker showed that transcendental self-maps of C∗ can only

have one doubly connected Fatou component, which separates zero

from infinity [Bak87, Theorem 1]. Thus, Bn ∩ J(f) 6= ∅ for all n large
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enough and, since J(f) is a backward invariant closed set, we have

Ae(f)∩ J(f) 6= ∅. �

Next we prove Theorems 2.7 and 2.8 which correspond to prop-

erties (I2) and (I3) proved by Eremenko in [Ere89] for transcendental

entire functions. To that end, in Theorem 2.9 we show that, for a trans-

cendental self-map of C∗, the components of the fast escaping set are

unbounded in C∗. Before this, we prove Theorem 2.21 which con-

cerns fast escaping Fatou components and is of independent interest

as well as being a key ingredient of the proof of Theorem 2.7.

Theorem 2.21. Let f be a transcendental self-map of C∗. If U is a Fatou

component of f such that U ∩ A−`,k
e (f,R) 6= ∅ for some R > 0, ` > 1,

k ∈N0 and e ∈ {0,∞}N0 , then U ⊆ A−`,k
e (f,R).

Note that if ` < 1, then A−`,k
e (f) ⊆ A−1,k−`+1

e (f), by Lemma 2.15,

so we can apply Theorem 2.21 to the set A−1,k−`+1
e (f). To prove The-

orem 2.21 we will use the following version of a distortion lemma

of Baker [Bak88] (see also [Ber93, Lemma 7] and [RS00, Theorem 3])

adapted to C∗.

Lemma 2.22. Let f be a transcendental self-map of C∗ and let U be a Fatou

component that is in I(f). Let K be a compact subset of U. Then there exist

constants C > 1 and n0 ∈N0 such that

|fn(z1)| 6 C|f
n(z2)|

for all z1, z2 ∈ K and n > n0.

Proof. Let Un := fn(U) for all n ∈ N0, which are not necessarily

distinct. Recall that [z,w]Ω is the hyperbolic distance between two

points z and w in a hyperbolic domain Ω; we use ρΩ(z) to denote

the hyperbolic density in Ω. By Theorem 2.4 and Theorem 2.9, we

can choose two connected subsets X0 and X∞ of A(f) ∩ J(f) whose

closure in Ĉ contains, respectively, zero and infinity, and such that

G := C∗ \ (X0 ∪X∞) is simply connected. For all z1, z2 ∈ K,

[z1, z2]U0 > [fn(z1), fn(z2)]Un > [fn(z1), fn(z2)]G =

∫
Γn

ρG(z)|dz|,
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where Γn is a hyperbolic geodesic in G joining fn(z1) to fn(z2). Since

the set G is simply connected, there exists a constant c > 0 such that,

for sufficiently large R > 0,

ρG(z) >
c

|z|
for |z| > R and |z| < 1/R.

This follows from [CG93, Theorem 4.3 in Chapter I] for z near zero.

Observe that, for z near infinity, taking g(z) := 1/z, we obtain

ρG(z) = ρg(G)(g(z))|g
′(z)| =

ρg(G)(1/z)

|z|2
>
c|z|

|z|2
=
c

|z|
for |z| > R.

Let n0 ∈ N0 be such that both points fn(z1), fn(z2) are contained in

D(0, 1/R) or C \D(0,R) for all n > n ′0. Thus, if |fn(z2)| 6 |fn(z1)|, we

have

[fn(z1), fn(z2)]G >
∫ |fn(z1)|
|fn(z2)|

c

r
dr = c ln

|fn(z1)|

|fn(z2)|
.

Hence,
|fn(z1)|

|fn(z2)|
6 exp

(
1

c
[z1, z2]U0

)
=: C

and |fn(z1)| 6 C|fn(z2)| for n > n0 as required. �

We now prove Theorem 2.21 concerning fast escaping Fatou com-

ponents of transcendental self-maps of C∗.

Proof of Theorem 2.21. Suppose first that U is simply connected. We

can assume, without loss of generality, that k = 0, otherwise take

a shift of e. We can also assume that there is a sequence (nj) such

that enj =∞, as the proof is similar in the other case.

Let R > R(f) and consider the sequence of real numbers (Rn) that

starts with R0 := R, if e0 = ∞, or R0 := 1/R, if e0 = 0, and is defined

iteratively by Rn = M̃(Rn−1) as in Definition 2.3, where M̃(r) is M(r)

or m(r) according to e. If z0 ∈ U∩A−`,0
e (f,R), then

|fnj+`(z0)| > M̃
nj(R0) = Rnj for j ∈N0. (2.4)

Suppose now that there is z1 ∈ U \A−`,0
e (f,R). By normality, the

essential itineraries of z0 and z1 need to coincide eventually, that is,

there is L ∈ N0 such that fL+`(z0) and fL+`(z1) have the same es-
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sential itinerary, and L is the smallest value with this property. Now,

either there is L ′ > L such that

|fL
′+`(z1)| < RL ′ , if eL ′ =∞, or |fL

′+`(z1)| > RL ′ , if eL ′ = 0,

or, for all n > L,

|fn+`(z1)| > Rn, if en =∞, or |fn+`(z1)| 6 Rn, if en = 0.

Note that, since z1 /∈ A−`,0
e (f,R), if L = 0, then the first case applies.

If L > 0 and we are in the second case, then, by continuity, there

exists z2 ∈ fL+`−1(U) with the same essential itinerary as fL+`−1(z0)

and such that

|z2| < RL−1, if eL−1 =∞, or |z2| > RL−1, if eL−1 = 0.

Hence, we can suppose that the first case applies and, if necessary,

continue the argument with the iterates of the point z2 instead of

those of fL+`−1(z1). Thus, by Lemma 2.14(ii), there is N = nm > L

for some m ∈N0 and c > 1 such that

R(f) < |fN+`(z1)| = M̃
N(R0)

1/c = R
1/c
N =: K

and hence, by the definition of M̃(r),

|fnj+`(z1)| =
∣∣fnj−N

(
fN+`(z1)

)∣∣ 6 M̃nj−N(R
1/c
N ) for nj > N.

(2.5)

We can suppose that K is larger than the constant R = R∞(f) from

Lemma 2.10(iii). Then, combining equations (2.4) and (2.5), we obtain

|fnj+`(z0)|

|fnj+`(z1)|
>

M̃nj(R0)

M̃nj−N(R
1/c
N )

=
M̃nj−N

(
M̃N(R0)

)

M̃nj−N(K)
=
M̃nj−N(Kc)

M̃nj−N(K)

for all nj > N. This contradicts Lemma 2.22 because, applying Lem-

ma 2.10(iii) repeatedly,

M̃nj−N(Kc)

M̃nj−N(K)
>

(
M̃nj−N(K)

)c

M̃nj−N(K)
=
(
M̃nj−N(K)

)c−1 → +∞ as j→∞.

Therefore U ⊆ A−`,0
e (f,R) and, since A−`,0

e (f,R) is closed, we have

that U ⊆ A−`,0
e (f,R).
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Finally, if U is not simply connected, then f(U) is simply connec-

ted since f can only have one multiply connected Fatou compo-

nent [Bak87, Theorem 1]. As f
(
A−`,k
e (f,R)

)
⊆ A−`+1,k

e (f,R), in this

case f(U) ∩A−`+1,k
e (f,R) 6= ∅ and using the same argument as above

we conclude that f(U) ⊆ A−`+1,k
e (f,R). Since we supposed that ` > 1,

in this case we also have

U ⊆ f−1
(
A−`+1,k
e (f,R)

)
= A−`,k

e (f,R)

as required. �

Now we can prove Theorem 2.7, which says that, for each

sequence e ∈ {0,∞}N0 , we have that J(f) = ∂Ae(f) = ∂Ie(f) and

also J(f) = ∂A(f) = ∂I(f).

Proof of Theorem 2.7. Take z ∈ J(f), and let V be a neighbourhood of z.

Consider a point z1 ∈ Ae(f) ⊆ I(f). Since the family of iterates of f

is not normal in V , by Montel’s theorem we can find a preimage z∗

of z1 in V ; that is, fk(z∗) = z1 for some k > 1. Since Ae(f) and I(f)

are completely invariant, z∗ ∈ Ae(f) ⊆ I(f). Thus J(f) ⊆ Ae(f). But

intAe(f) ⊆ int I(f) ⊆ F(f) because periodic points are dense in J(f).

So J(f) ⊆ ∂Ae(f).
The opposite inclusion follows from Theorem 2.21. If there exists a

point z ∈ ∂Ae(f) ∩ F(f), then there would be points arbitrarily close

to z in Ae(f) but since F(f) is open the whole Fatou component would

be in Ae(f). Hence ∂Ae(f) ⊆ J(f).
The facts that J(f) = ∂Ie(f) for each essential itinerary e ∈ {0,∞}N0

and J(f) = ∂A(f) = ∂I(f) are proved similarly. �

Observe that {Ae(f)} and {Ie(f)} contain uncountable collections of

disjoint sets all sharing the same boundary, which is precisely the

Julia set J(f). Baker, Domínguez and Herring [BDH01] had shown

previously that if f is a meromorphic function with a certain set of

essential singularities E then the set of points escaping to one particu-

lar e ∈ E, namely I(f, e), satisfies that ∂I(f, e) = J(f). This implies that

in our setting ∂I0(f) = ∂I∞(f) = J(f) which was also shown by Fang

[Fan98]. Our result shows that this property holds for Ie(f) for any

essential itinerary e ∈ {0,∞}N0 .

Next we prove Theorem 2.8. Recall that a set X is unbounded in C∗

if X̂∩ {0,∞} 6= ∅.
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Proof of Theorem 2.8. Suppose to the contrary that X is a component

of Ie(f) that is bounded away from zero and infinity. Then there is a

topological annulus A in the complement of Ie(f) separating X from

both zero and infinity. Since the points in A have orbits that miss the

infinite set Ie(f), A ⊆ F(f) by Montel’s theorem. Let K be the compo-

nent of C∗ \A containing X. By Theorem 2.7, we have K ∩ J(f) 6= ∅
and hence A must be contained in a multiply connected component

of F(f). But Baker and Domínguez [BD98] showed that such com-

ponents must be doubly connected and separate zero from infinity

which is a contradiction to the fact that A is doubly connected and

separates a component of J(f) from both zero and infinity.

The last claim in the statement of the theorem follows from the fact

that every connected component of I(f) contains at least one compo-

nent of Ie(f) for some e ∈ {0,∞}N0 , and hence it must be unbounded

as well. �

Before proving Theorem 2.9 we need the following lemma concern-

ing preimages of unbounded closed sets under transcendental self-

maps of C∗.

Lemma 2.23. Let f be a transcendental self-map of C∗, and let X ⊆ C∗ be an

unbounded continuum. Then all the components of f−1(X) are unbounded.

Proof. Let W be a connected component of f−1(X). Since f is contin-

uous and X is closed, f−1(X) is also closed. Assume, to the contrary,

that W is bounded. Then, by [New61, p. 143], there exists an annulus

A ⊇ W, whose boundary consists of Jordan curves in C∗ \ f−1(X).

Since f is an open mapping, f(A) is a connected open set in C∗ and

∂f(A) ⊆ f(∂A), which does not meet X. Thus X ⊆ f(A), which contra-

dicts the fact that X is unbounded. �

Finally we prove Theorem 2.9 which says that the connected compo-

nents of A(f) are all unbounded. Note that, in particular, this implies

that I(f) has at least one component which has zero in its closure and

one component (possibly the same component) which has infinity in

its closure.

Proof of Theorem 2.9. Let z0 ∈ Ae(f), then z0 ∈ A−`,k
e (f,R) for some

` ∈ Z, k ∈ N0 and R > 0. By Lemma 2.15, it is enough to consider

the case ` ∈ N, and, by Lemma 2.23, if f`(z0) lies in an unbounded
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component X of Ae(f), then f−`(X) is also unbounded, and thus we

can assume that ` = 0. Furthermore, since A−`,k
e (f,R) = A−`,0

σk(e)
(f,R),

we can also suppose that k = 0. Fix n ∈N0 and suppose that en =∞,

that is,

|fn(z0)| > Rn =M(Rn−1).

Consider the finite sequence of closed sets

Xn,j := f
−j
(
C \D(0,Rn)

)
, j = 1, . . . ,n,

which, by Lemma 2.23, are unbounded in C∗. One of the connected

components of Xn,j must contain the point fn−j(z0); we denote this

component by Ln,j.

Now there are two cases to consider: either

(i) en−1 =∞ and |fn−1(z0)| > M(Rn−2) = Rn−1, or

(ii) en−1 = 0 and |fn−1(z0)| < m(Rn−2) = Rn−1.

In case (i), Ln,1 cannot contain points of modulus less than Rn−1.

Otherwise ifw is such that |w| < Rn−1 and f(w) ∈ Ln,0 = C\D(0,Rn)

then we would get a contradiction with the fact that Rn = M(Rn−1)

but |f(w)| > Rn. Similarly, in case (ii), if |fn−1(z0)| < Rn−1 we cannot

have points in Ln,1 that have modulus larger than Rn−1.

Now, iterating this procedure, for every n ∈ N0, we deduce that

Ln = Ln,n is a closed connected set which is contained in C \D(0,R0),

if e0 =∞, or in D(0,R0), if e0 = 0. Observe that

Ln+1 ⊆ Ln.

Otherwise there would exist w ∈ Ln+1 such that w /∈ Ln which

means that
|fn+1(w)| > Rn+1, if en =∞,

|fn+1(w)| < Rn+1, if en = 0,

but
|fn(w)| < Rn, if en =∞,

|fn(w)| > Rn, if en = 0,
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which is a contradiction. Therefore (Ln ∪ {e0}) is a nested sequence of

continua all containing z0 and e0, and hence

K =
⋂

n∈N

(Ln ∪ {e0})

is also a continuum in Ĉ which contains z0 and e0. Let Γ be the

connected component of K \ {e0} that contains z0. Then Γ is closed

and unbounded. Here we are using the following result from contin-

uum theory: if E0 is a continuum in Ĉ, E1 is a closed subset of E0
and C is a component of E0 \ E1, then C meets E1 [New61, p. 84].

Since Γ ⊆ Ae(f), the theorem is proved. �



3
D Y N A M I C R AY S O F B O U N D E D - T Y P E F U N C T I O N S

In this chapter we study the escaping set of functions in the class B∗,

that is, transcendental self-maps of C∗ for which the set of singular

values is bounded in C∗. For functions in the class B∗, escaping points

lie in their Julia set. We prove that if f is a composition of finite or-

der transcendental self-maps of C∗ (and hence, in the class B∗), then

every escaping point of f can be connected to one of the essential

singularities by a curve of points that escape uniformly. Moreover,

for every sequence e ∈ {0,∞}N0 , we show that the set Ie(f) contains

an absorbing Cantor bouquet. We also show the existence of periodic

dynamic rays, which must land.

3.1 introduction and main results

In the punctured plane, the analogue of the Eremenko-Lyubich class B

is the class

B∗ := {f transc. self-map of C∗ : sing(f−1) is bounded away from 0,∞}

which consists of bounded-type transcendental self-maps of C∗. We

prove the following result for functions in the class B∗.

Theorem 3.1. Let f ∈ B∗. Then I(f) ⊆ J(f).

Recall that Kotus[Kot90] showed that transcendental self-maps of C∗

can have Baker domains and wandering domains; we will construct

more examples of functions with escaping Fatou components in the

next chapter. It remains an open question whether functions in the

class B∗ can have wandering domains outside the escaping set, as is

the case for entire functions in the class B [Bis15, Theorem 17.1].

It is a natural question to ask about the relationship between entire

functions in the class B and transcendental self-maps of C∗ in the

class B∗. Keen [Kee88] showed that if P and Q are polynomials and

n ∈ Z, then the function f(z) = zn exp
(
P(z) +Q(1/z)

)
has a finite

51
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number of singular values and hence belongs to the class B∗. The

next theorem extends this results to all functions in the class B when

n = 0.

Theorem 3.2. Let g and h be entire functions in the class B. Then the

function f(z) = exp
(
g(z) + h(1/z)

)
is in the class B∗.

In the previous chapter we discussed the properties of the maxi-

mum and minimum modulus functions; for r > 0, we define

M(r, f) := max
|z|=r

|f(z)| and m(r, f) := min
|z|=r

|f(z)|.

In contrast to the situation for entire functions, there is a strong rela-

tion between the bounded-type condition for holomorphic self-maps

of C∗ and their order of growth. To be more precise, recall that the

order and lower order of an entire function f can be defined, respec-

tively, as

ρ(f) := lim sup
r→+∞

log logM(r, f)
log r

and λ(f) := lim inf
r→+∞ log logM(r, f)

log r
.

If f is a transcendental self-map of C∗, then we also need to take into

account the essential singularity at zero. Hence the order of growth is

given by two quantities:

ρ∞(f) := lim sup
r→+∞

log logM(r, f)
log r

, ρ0(f) := lim sup
r→0

log log 1/m(r, f)
log 1/r

.

We say that f has finite order if both ρ∞(f) < +∞ and ρ0(f) < +∞.

Likewise, we can define two quantities associated with the lower or-

der of such functions, λ∞(f) and λ0(f), by replacing lim sup by lim inf

in the expression above. An important property of entire functions

f ∈ B is that λ(f) > 1/2 [BE95; Lan95] (see also [RS05a, Lemma 3.5]).

The next result shows that, surprisingly, the lower order of a function

in C∗ always equals its order. Moreover, if the order is finite, then it

is an integer.

Theorem 3.3. Let f be a transcendental self-map of C∗. Then λ0(f) = ρ0(f)

and λ∞(f) = ρ∞(f). If f has finite order, then f(z)=zn exp
(
P(z) +Q(1/z)

)

where n ∈ Z and P,Q are polynomials, and therefore ρ0(f), ρ∞(f) ∈ Z and

f ∈ B∗. In particular, λ0(f), λ∞(f) > 1.
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Rottenfußer, Rückert, Rempe and Schleicher [RRRS11, Theorem 1.2]

proved that the stronger version of Eremenko’s conjecture holds for

transcendental entire functions of bounded type and finite order or,

more generally, a finite composition of such functions: every esca-

ping point can be joined to infinity by a curve of points that escape

uniformly; such curves are called ray tails and their maximal exten-

sions are called dynamic rays. This result was proved independently

by Barański [Bar07, Theorem C] for disjoint-type functions, that is,

transcendental entire functions for which the Fatou set consists of

a completely invariant component which is a basin of attraction. In

general, it is not known whether such dynamic rays must be smooth.

Figure 4: Period 8 cycle of rays landing on a repelling period 4 orbit in

the unit circle for the function fαβ(z) = zeiαeβ(z−1/z)/2 from the

Arnol’d standard family, with α = 0.19725 and β = 0.48348.

We prove the existence of dynamic rays for transcendental self-

maps of C∗ by adapting the construction of [RRRS11] to our setting.

We use the notation fn
|γ → {0,∞} to mean that, under iteration by f,

all the points in γ escape to zero, escape to infinity or accumulate at

both of them and nowhere else.

Theorem 3.4. Let f be a transcendental self-map of C∗ of finite order or,

more generally, a finite composition of such functions. Then every point

z ∈ I(f) can be connected to either zero or infinity by a curve γ such that

fn
|γ → {0,∞} uniformly in the spherical metric as n→∞.
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Note that in the statement of Theorem 3.4 there is no assumption of

bounded type. This is because finite order transcendental self-maps

of C∗ are always in the class B∗ (see Lemma 3.35).

Remark 3.5. In the masters thesis [Mar11], we showed that points in

the sets I0(f) and I∞(f) can be joined to zero and infinity, respectively,

by ray tails. Theorem 3.4 generalises this result to all points in I(f).

Bergweiler [Ber95] proved that if f̃ is a lift of a holomorphic self-

map f of C∗, then J(f̃) = exp−1 J(f). Seeing this result one might

think that every result about entire functions could be extended to

self-maps of C∗ via their lifts. Unfortunately, this is not possible. In

particular, a lift of a map of bounded type is never of bounded type,

its singular set is contained in a vertical band and so, we cannot apply

directly the results from [RRRS11]. However, Theorem 3.4 allows to

construct dynamic rays for certain entire functions that are not in

the class B, but project to functions in the class B∗ satisfying the

hypothesis of Theorem 3.4.

Corollary 3.6. Let f be an entire transcendental function of finite order

such that there exists k ∈ Z so that f(z+ 2πi) = f(z) + k2πi for all z ∈ C,

or a finite composition of such functions. Then every point z ∈ I(f) with

|Re fn(z)| → +∞ as n → ∞ can be connected to infinity by a curve of

points that escape uniformly.

The main tool to prove Theorem 3.4 is the use of logarithmic coor-

dinates, introduced by Eremenko and Lyubich [EL92], and the expan-

sivity of logarithmic transforms. The orbit of escaping points eventu-

ally enters the tracts (unbounded Jordan domains which are mapped

to a neighbourhood of zero or infinity) and remains there. We par-

tition each tract into fundamental domains and consider itineraries on

them; see Section 3.5 for the precise definitions. Observe that the pre-

vious theorem contains no claim of which dynamic rays actually exist.

Our next result shows that, under the hypothesis of Theorem 3.4,

there is a unique dynamic ray for every sequence of fundamental do-

mains that contains only finitely many symbols. Here P(f) denotes

the postsingular set of f which is the closure of the union of all the

(forward) iterates of sing(f−1). We say that a dynamic ray γ lands if

γ \ γ is a single point.

Theorem 3.7. Let f be a transcendental self-map of C∗ of finite order or,

more generally, a finite composition of such functions, and let (Dn) be an
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admissible sequence of fundamental domains of f containing finitely many

symbols. Then the function f has a unique non-empty dynamic ray γ with

itinerary (Dn). Furthermore, if (Dn) is periodic and the set P(f) is bounded

in C∗, then the dynamic ray γ lands.

Observe that, for example, Theorem 3.7 implies that every funda-

mental domain contains exactly one invariant dynamic ray. In the

previous chapter we studied a partition of I(f) into non-empty sets

Ie(f), for e ∈ {0,∞}N0 (see Theorem 2.4). Since there are uncountably

many disjoint sets Ie(f), it follows from Theorem 3.4 that I(f) contains

uncountably many ray tails. However, each of the sets Ie(f) should be

regarded as the analogue of the whole of I(f) for a transcendental en-

tire function f. Thus, we follow the methods of Barański, Jarque and

Rempe [BJR12] to prove that, in fact, under the hypothesis of Theo-

rem 3.4, each set Ie(f) contains an absorbing Cantor bouquet and, in

particular, uncountably many ray tails.

Theorem 3.8. Let f be a transcendental self-map of C∗ of finite order or,

more generally, a finite composition of such functions. For each sequence

e ∈ {0,∞}N0 , there exists a Cantor bouquet Xe ⊆ Ie(f) and, in particular,

the set Ie(f) contains uncountably many ray tails.

Although Theorem 3.4 is stated in terms of functions of finite order,

its proof is more general and applies to a class of functions satisfy-

ing certain good geometry properties (see Definition 3.28). Rempe, Rip-

pon and Stallard showed that, assuming an extra condition (namely,

that the tracts have what they call bounded gulfs), the ray tails con-

structed in [RRRS11] consist of fast escaping points [RRS10, Theo-

rem 1.2]. It seems likely that similar conditions would imply that the

dynamic rays that we construct here are also fast escaping in the sense

described in the previous chapter.

Remark 3.9. Lasse Rempe-Gillen (private communication) pointed out

that Theorem 3.4 may also be proved using random iteration as de-

scribed in the last paragraph of [RRRS11, Section 5] by taking, for

R > 0 sufficiently large,

f1(z) :=

f(z), if |f(z)| > R,

1/f(z), if |f(z)| < 1/R;
f2(z) :=

f(1/z), if |f(1/z)| > R,

1/f(1/z), if |f(1/z)| < 1/R;
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which both have a logarithmic transform in the class Blog and then

apply the results of [RRRS11] to a non-autonomous sequence of these

two functions. However, it seems natural to provide a direct proof.

Structure of the chapter. Roughly speaking, the first half of the chap-

ter is devoted to describing the basic properties of functions in the

class B∗ and in the second half we investigate the existence of dy-

namic rays for these functions. In Section 3.2, we study what is the re-

lation between the classes B and B∗; the proof of Theorem 3.2 is there.

In Section 3.3, we describe the geometry of logarithmic coordinates

of functions in the class B∗ and give the proof of Theorem 3.1. Finite

order functions are introduced in Section 3.4, where we prove Theo-

rem 3.3, and are shown to be examples of functions with good geo-

metry. In Section 3.5, we introduce external addresses and describe

their relation with essential itineraries. In contrast to what happens

in the entire case, in our setting the Bernoulli shift map is a sub-

shift of finite type, where only some sequences are admissible. In

Section 3.6, we show that if an external address s is periodic, then the

set Js(F) consisting of all points whose external address is s contains

an unbounded continuum of fast escaping points - this is used later

to prove Theorem 3.7 in Section 3.9. Dynamic rays are introduced

in Section 3.7. Finally the proofs of Theorem 3.4 and Theorem 3.8

are sketched in Section 3.8 and Section 3.9, respectively, focusing on

the differences with the proofs of [RRRS11, Theorem 1.2] and [BJR12,

Theorem 1.6], which concern entire functions.

3.2 functions in the class B∗

Let f be a transcendental entire function or a transcendental self-map

of C∗. Recall that v ∈ Ĉ is a critical value of f if v = f(c) with

f ′(c) = 0, and a ∈ Ĉ is an asymptotic value of f if there is a continu-

ous injective curve γ : (0 , +∞) → Ĉ (the asymptotic path) such that

γ(t) → α as t → +∞, where α is an essential singularity of f, and

f
(
γ(t)

)
→ a. Let CP(f) denote the set of critical point of f. The set

of singularities of the inverse function, sing(f−1), consists of the crit-
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ical values of f, CV(f) := f(CP(f)), and the finite asymptotic values

of f, AV(f), that is

sing(f−1) = CV(f) ∪ AV(f) .

In C∗, by finite asymptotic value we mean that a /∈ {0,∞}. For

transcendental self-maps of C∗, we can decompose AV(f) as

AV(f) = AV0(f)∪AV∞(f),
depending on whether a ∈ AV(f) has an asymptotic path γ to zero

or to infinity. Note that the set AV0(f) ∩AV∞(f) may be non-empty.

Finally, we define the singular set of f, S(f), and the postsingular set

of f, P(f), as

S(f) := sing(f−1), P(f) :=
⋃

n∈N

fn
(
sing(f−1)

)
.

We say that f has bounded type if S(f) is bounded. Similarly, we say

that f has finite type if S(f) is finite.

The next result relates the singular set and the postsingular set of a

transcendental self-map f of C∗ with the corresponding sets of a lift f̃

of f. Recall that a lift of f is a transcendental entire function f̃ so that

exp ◦f̃ = f ◦ exp. The proof is straightforward and we omit it.

Lemma 3.10. Let f be a transcendental self-map of C∗and let f̃ be a lift of f.

Then S(f̃) = exp−1
(
S(f)

)
and P(f̃) ⊆ exp−1

(
P(f)

)
.

Recall that if f is a holomorphic self-map of C∗, we define ind(f)

to be the index of f(γ) with respect to the origin, where γ is any

positively oriented simple closed curve around the origin. Observe

that, in the hypothesis of the previous lemma, if |ind(f)| = 1, then

P(f̃) = exp−1
(
P(f)

)
.

The following lemma is a basic property about the singular values

of the composition of two functions.

Lemma 3.11. Let f and g be meromorphic functions in C. Then we have

that CP(g ◦ f) = CP(f) ∪ f−1
(
CP(g)

)
, CV(g ◦ f) ⊆ g

(
CV(f)

)
∪ CV(g)

and AV(g ◦ f) = g(AV(f))∪AV(g).
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Proof. By the chain rule, (g ◦ f) ′(z) = g ′
(
f(z)

)
f ′(z), and thus

CP(g ◦ f) = CP(f)∪ f−1
(
CP(g)

)
,

CV(g ◦ f) = (g ◦ f)
(
CP(g ◦ f)

)

⊆ (g ◦ f)CP(f)∪ g
(
CP(g)

)

= g
(
CV(f)

)
∪CV(g).

Observe that the set f−1
(
CP(g)

)
may be empty, and hence the other

inclusion does not hold in general.

Finally, if γ is an asymptotic path of g ◦ f with asymptotic value a,

then either f
(
γ(t)

)
) → b ∈ AV(f) as t → +∞, where g(b) = a, or

f(γ) is an asymptotic path of g and a ∈ AV(g). Therefore we have

AV(g ◦ f) ⊆ g
(
AV(f)

)
∪ AV(g) and the opposite inclusion follows

easily. �

Let B and B∗ be the bounded-type classes defined in Section 2.1.

Observe that, by Lemma 3.11, both B and B∗ are closed under com-

position. Recall that Theorem 3.2 establishes a way to construct func-

tions in B∗ from functions in B. To prove this theorem, we need the

following preliminary result.

Proposition 3.12. Let f(z) = zn exp
(
g(z) + h(1/z)

)
with n ∈ Z and let

g,h be non-constant entire functions. If the functions f∞(z) := zn exp
(
g(z)

)

and f0(z) := zn exp
(
−h(z)

)
as well as 1/f∞ and 1/f0 have bounded type,

then f ∈ B∗.

Note that if n > 0, then f∞ and f0 are transcendental entire func-

tions, while if n < 0, then they are meromorphic functions on C with

a pole at the origin (which is omitted).

Proof of Proposition 3.12. We can express

f(z) = zn exp
(
g(z) + h(1/z)

)
= f∞(z) · exp

(
h(1/z)

)
.

Suppose that f∞(z) tends to a finite value a ∈ C as z → ∞ along an

asymptotic path γ. Then f(z)→ eh(0)a as z→∞ along γ. Conversely,

if f(z) tends to a finite value a ∈ C as z → ∞ along an asymptotic

path γ, then f(z) → a/eh(0) as z → ∞ along γ. Hence we have

AV∞(f) = eh(0) ·AV(f∞).
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Differentiating f, we obtain

f ′(z) = f(z)

(
−
h ′(1/z)

z2
+
f ′∞(z)
f∞(z)

)
,

or, equivalently,

zf ′(z)

f(z)
= −

h ′(1/z)

z
+
zf ′∞(z)
f∞(z) .

It follows from [EL92, Lemma 1], which is proved by an application

of Koebe’s 1/4-theorem to the inverse of a logarithmic transform of f

(see also Lemma 3.21), that if f ∈ B, then there is a constant R0 > 0

such that
∣∣∣∣z
f ′(z)

f(z)

∣∣∣∣ >
1

4π

(
log |f(z)|− logR0

)
for z ∈ D(0,R0), (3.1)

and hence

ηf := lim
R→+∞ inf

{∣∣∣∣zf ′(z)f(z)

∣∣∣∣ : |f(z)| > R

}
= +∞. (3.2)

If n < 0, the function f∞ is meromorphic but, since the pole at z = 0

is omitted and sing(f−1∞ ) is bounded away from the origin, the proof

of Lemma 3.21 can be adapted to obtain inequality (3.1) in this case

as well. Suppose that f∞ has bounded type, then

inf
{∣∣∣∣zf ′∞(z)f∞(z)

∣∣∣∣ : |f∞(z)| > R
}
→ +∞ as R→ +∞.

Since f∞ is entire, the components of the set {z ∈ C : |f∞(z)| > R} are

all unbounded and tend to infinity as R→ +∞ in the sense that their

distance from the origin tends to infinity. Therefore, since

exp
(
h(1/z)

)
→ exp

(
h(0)

)
and

h ′(1/z)

z
→ 0 as z→∞,

there exists M,N > 0 such that if |f(z)| > R and |z| > 1 then

|f∞(z)| = |f(z)|

exp
(
Re h(1/z)

) > R

M
and

∣∣∣∣
h ′(1/z)

z

∣∣∣∣ < N,

and so, the quantity

inf
{∣∣∣∣zf ′(z)f(z)

∣∣∣∣ : |f(z)|>R, |z|>1

}
> inf

{∣∣∣∣zf ′∞(z)f∞(z)
∣∣∣∣ : |f∞(z)|> R

M

}
−N
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tends to +∞ as R→ +∞. Hence, CV(f) cannot contain a sequence of

critical values whose critical points are in C \ D that accumulate at

infinity, because if f(z) is a critical value, then we have zf ′(z)/f(z) = 0.

Similarly, in a neighbourhood of zero, the quantity

inf
{∣∣∣∣zf ′(z)f(z)

∣∣∣∣ : |f(z)|<
1

R
, |z|61

}
> inf

{∣∣∣∣zf ′0(z)f0(z)

∣∣∣∣ : |f0(z)|>
R

M ′

}
−N ′

tends to +∞ as R → +∞, and thus f has no critical values accumu-

lating to zero whose critical points are in D. Finally, since we are

assuming that the functions 1/f∞ and 1/f0 have bounded type too,

0 /∈ sing(f−1∞ ) ′ ∪ sing(f−10 ) ′ and therefore the quantities

inf
{∣∣∣∣zf ′(z)f(z)

∣∣∣∣ : |f(z)|<
1

R
, |z|>1

}
, inf

{∣∣∣∣zf ′(z)f(z)

∣∣∣∣ : |f(z)|>R, |z|61

}
tend to +∞ as R→ +∞. Hence f ∈ B∗. �

Sixsmith [Six14] showed that if f /∈ B, then ηf = 0, where ηf is

the quantity defined in (3.2), and thus provided an alternative charac-

terisation of functions in the class B. This was later generalised by

Rempe-Gillen and Sixsmith in [RS15].

Theorem 3.2 states that if g,h are in the class B, then the func-

tion f(z) = exp
(
g(z) + h(1/z)

)
is in class B∗. Thus, it can be used to

produce examples of functions in the class B∗ from functions in the

class B (see Example 3.15). Recall that Keen proved that if g,h are

polynomials and n ∈ Z, then f(z) = zn exp
(
g(z) + h(1/z)

)
is in the

class B∗ as well (see Proposition 3.34 and Lemma 3.35).

Proof of Theorem 3.2. Let f∞ = exp ◦g where g ∈ B. By Lemma 3.11,

AV(f∞) = AV(exp)∪ exp(AV(g)) = exp(AV(g))∪ {0},

CP(f∞) = CP(g)∪ g−1
(
CP(exp)

)
= CP(g)∪ g−1

(
∅
)
= CP(g),

and both CV(f∞) = exp
(
CV(g)

)
and AV(f∞) are bounded in C. On

the other hand,

AV(1/f∞) = AV(exp)∪ exp(AV(−g)) = exp(−AV(g))∪ {0},

CP(1/f∞) = CP(−g) = CP(g),
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and therefore CV(1/f∞) = exp
(
−CV(g)

)
and AV(1/f∞) are bounded

in C too. Similarly, since h ∈ B, the functions f0(z) = exp
(
−h(z)

)
and

1/f0 have bounded type. Therefore f∞ and f0 satisfy the hypothesis

of Proposition 3.12 and so the function f(z) = exp
(
g(z) + h(1/z)

)
is

in the class B∗. �

Remark 3.13. Observe that if n 6= 0 and f(z) = zn exp
(
g(z)

)
with

g ∈ B, then the set CV(f) may accumulate at zero (n > 0) or to infinity

(n < 0) despite the fact that CV(g) is bounded. Thus, Theorem 3.2 is

optimal.

Remark 3.14. The converse of Theorem 3.2 is not true in general, as the

critical values of g can be unbounded in a vertical band and the criti-

cal values of f∞ be bounded in an annulus. For example, observe that

the Fatou function g(z) = z+ 1+ e−z is not in the class B, while the

function f(z) = exp
(
g(z) + 1/z

)
is in the class B∗ by Proposition 3.12

as CV(eg) = {e2} and AV(eg) = {0}.

Example 3.15. We give a couple of examples of functions in the class B∗

constructed from functions in the class B using Theorem 3.2.

(i) The function f(z) = exp(sin z/z+ 1/z) is in the class B∗ and the

set sing(f−1) contains infinitely many points that accumulate at

z = 1.

(ii) The function f(z) = exp(exp z+ 1/z) is in the class B∗ and has

a finite asymptotic value a = 1.

3.3 logarithmic coordinates for the class B∗

Let f be a transcendental entire function or a transcendental self-map

of C∗. Let a ∈ Ĉ and let D̂(a , r) denote the disc centred at a of

radius r in the spherical metric. For r > 0, choose U(r) to be a

connected component of f−1
(
D̂(a , r)

)
such that if 0 < r1 < r2 ,

then U(r1) ⊆ U(r2). We say that U is a logarithmic singularity over a

if

f : U(r) → D̂(a , r) \ {a}

is a universal covering for some r > 0 (see [Ive14] for a classification

of the singularities of the inverse function). Transcendental self-maps

of C∗ have logarithmic singularities over both zero and infinity.
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Definition 3.16 (Logarithmic tract). Let f ∈ B∗ and let A ⊆ C be a

topological annulus bounded away from zero and infinity that con-

tains the set S(f). Denote W := W0 ∪ W∞, where W0 and W∞ are

the components of C∗ \ A whose closure in Ĉ contains, respectively,

zero and infinity. A (logarithmic) tract of f is a connected component

of the set V = f−1(W0) ∪ f−1(W∞).

Note that if V is a tract of f, then the map f : V →Wi is a universal

covering, where i ∈ {0,∞}. The following lemma is a well-known clas-

sification of the coverings of the punctured disk D∗ := D \ {0} [Hat02]

(see also [For91]). If X is a Riemann surface, we say that two holomor-

phic coverings p1 : X̃1 → X and p2 : X̃2 → X of X are equivalent if

there exists a conformal map p21 : X̃2 → X̃1 such that p2 = p1 ◦ p21.

Lemma 3.17 (Coverings of D∗). Let U ⊆ Ĉ and let f : U → D∗ be a

holomorphic covering. Then either U is conformally equivalent to D∗ and

f is equivalent to zd, or U is simply connected and f is a universal covering

and hence equivalent to the exponential map.

In particular, the closure of each tract in Ĉ contains only one of the

essential singularities. Now we are going to introduce a logarithmic

change of variables.

Definition 3.18 (Logarithmic coordinates). Let f ∈ B∗ and consider

the sets T := exp−1(V) and H := exp−1(W) = H0 t H∞ where

H0 = exp−1(W0) and H∞ = exp−1(W∞) contain, respectively, a left

and a right half-plane. A logarithmic transform of f is a continuous

function F : T → H which makes the following diagram commute.

T

exp
��

F // H

exp
��

V
f
//W

The connected components of T are called tracts of F and can be clas-

sified into four types:

T = T00 t T∞0 t T0∞ t T∞∞ ,

where the lower index indicates if the tracts have zero or infinity in

their closure and the upper index indicates if they are mapped to H0
or H∞ by F. We define T0 := T00 t T∞0 and T∞ := T0∞ t T∞∞ .
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In the entire case, often the expressions ‘lift’ and ‘logarithmic trans-

form’ are used interchangeably to refer to F which is defined on T

only. In this thesis we reserve the word lift for an entire function f̃

such that exp ◦f̃ = f ◦ exp.

Remark 3.19. Observe that we can obtain F as the restriction of a lift f̃

of f to the set T. However, since F is only defined on T, we can add a

different integer multiple of 2πi to F on each tract T , and hence F is

not necessarily the restriction of a transcendental entire function f̃.

Theorem 3.20. If f ∈ B∗, then a logarithmic transform F : T → H of f

satisfies the following properties:

(a) the set H is the union of two disjoint 2πi-periodic Jordan domains H0
and H∞ containing, respectively, a left and a right half-plane;

(b) every component of T is an unbounded Jordan domain whose points

have real part either bounded from below and unbounded from above

or unbounded from below and bounded from above;

(c) the components of T have disjoint closures and accumulate only at

zero and infinity;

(d) for every component T of T, the function F|T : T → H is a conformal

isomorphism;

(e) for every component T of T, the function exp|T is injective;

(f) the set T is invariant under translation by 2πi.

Moreover, there exists a curve δ ⊆ C∗ \ V joining zero to infinity, where

V = expT.

Proof. These properties follow easily from the fact that the exponen-

tial map is a holomorphic cover and, in particular, a local homeomor-

phism. The fact that there exists a curve δ ⊆ C∗ \ V joining zero to

infinity is a straightforward consequence of (b) and (c) in the case

that V consists of finitely many tracts. Otherwise, this follows from

Carathéodory’s theorem and the fact that V is locally connected (see

[BF15, Lemma 2.1]). Hence, we can define a continuous branch of the

logarithm on C∗ \ δ. �

We denote by B∗log the class of holomorphic functions F : T → H

satisfying properties (a) to (f) in Theorem 3.20, regardless of whether
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Figure 5: Logarithmic coordinates for a function f ∈ B∗.

or not they come from a function f ∈ B∗. The main advantage of

working in the classBlog from [RRRS11] or, in our case, the classB∗log,

is that such functions satisfy the following expansivity property (3.3)

which implies that points in I(f) eventually escape at an exponential

rate.

Lemma 3.21. Let F : T → H be a function in the class B∗log. There exists

R > 0 sufficiently large such that if |Re F(z)| > R, then

|F ′(z)| >
1

4π
|Re F(z)|− R.

In particular, there exists R0=R0(F)>0 so that

|F ′(z)| > 2 for all z ∈ T such that |Re F(z)| > R0. (3.3)
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See [EL92, Lemma 1] for the original result for entire functions. The

proof relies on properties (a), (d) and (e) of logarithmic transforms,

which are common in both settings, and Koebe’s 1/4-theorem.

Sullivan [Sul85] proved that rational maps have no wandering

domain. Following this result, Keen [Kee88], Kotus [Kot87] and Maki-

enko [Mak87] proved independently that transcendental self-maps

of C∗ with finitely many singular values have no wandering domains.

In [Kot87], Kotus also showed that finite-type maps in C∗ have no

Baker domains. Here we show that bounded-type transcendental self-

maps of C∗ have no escaping Fatou components by adapting the

proof that Eremenko and Lyubich gave for the class B [EL92, The-

orem 1].

Proof of Theorem 3.1. Suppose to the contrary that there exists a point

z0 ∈ F(f) ∩ I(f). Then, by normality, there exists some R0 > 0 so that

B0 := B(z0,R0) ⊆ F(f) ∩ I(f). Since B0 ⊆ I(f), there exists N0 ∈ N0

such that the sets Bn := fn(B0), n ∈ N, are contained in the set of

tracts V of f for all n > N0; we can assume without loss of generality

that N0 = 0. Let C0 be a connected component of exp−1(B0) and put

Cn := Fn(C0) for n ∈N. For every R > 0, there existsN = N(R) ∈N0

such that

Cn ⊆ {z ∈ C : |Re z| > R} for all n > N.

Take any point ζ0 ∈ C0 and, for all n > 0, set ζn := Fn(ζ0) ∈ Cn and

dn := dist(ζn,∂Cn). Then Koebe’s 1/4-theorem implies that

dn+1 >
1

4
dn|F

′(ζn)| for all n ∈N.

Since |Re F(ζn)| → +∞ as n → ∞, by Lemma 3.21, we have

|F ′(ζn)|→ +∞ and hence dn → +∞. But this contradicts property

(e) of functions in the class B∗log because T does not contain any ver-

tical segment of length 2π. Thus F(f)∩ I(f) = ∅ and I(f) ⊆ J(f). �

By property (a) in Theorem 3.20, if F : T → H is in the class B∗log,

then the set H contains the union of two half-planes of the form

H±R := {z ∈ C : |Re z| > R} = H−
R tH+

R

for some R > 0. We call F normalised if H = H±R for some R > 0 and

the function F satisfies the expansivity property (3.3).
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Definition 3.22 (Normalisation). We say that a logarithmic transform

F : T → H in B∗log is normalised if T ∩ {z ∈ C : Re z = 0} = ∅, the

set H = H±R for some R > 0, and the expansivity property (3.3) is

satisfied in H. We denote this class of functions by B∗nlog.

Logarithmic transforms of transcendental entire functions can be

normalised so that H is the right half-plane H. In contrast, in the

punctured plane, when we say that F is normalised we need to specify

the constant R. The next lemma shows that we can always assume that

F is in the class B∗nlog by restricting the function to a smaller set.

Lemma 3.23. Let F : T → H be a function in the class B∗log. There exists

a constant R = R(F) > 0 such that H±R ⊆ H and the restriction of F to

F−1(H±R ) is a normalised logarithmic transform.

Proof. Suppose that F is not normalised. Let {Bn}n∈Z denote the con-

nected components of the set C \ exp−1(δ), where δ is the curve from

Theorem 3.20. For n ∈ Z, the sets

Xn = T0 ∩Bn ∩H+ and Yn = T∞ ∩Bn ∩H−

are bounded and hence their images F(Xn) and F(Yn) have bounded

real part. All the sets F(Xn) and F(Yn), n ∈ Z, are vertical translates of

F(X0) and F(Y0) and hence F(T0∩H+) and F(T∞∩H−) have bounded

real part. Therefore, there exists R1 > 0 sufficiently large such that

(
F(T0 ∩H+)∪ F(T∞ ∩H−)

)
∩H±R1 = ∅.

Then, if R0 = R0(F) > 0 is the constant from Lemma 3.21 so that

|F ′(z)| > 2 if |Re F(z)| > R0, it is enough to put R := max{R0,R1}. �

The following lemma is a stronger version of the expansivity prop-

erty (3.3) for functions in B∗nlog, and says that escaping orbits eventu-

ally separate at an exponential rate. The proof of [RRRS11, Lemma

3.1] can be adapted easily to prove this lemma.

Lemma 3.24. Let F : T → H be in the class B∗nlog with H = H±R for some

R > 0. If T is a tract of F and z,w ∈ T are such that |z−w| > 8π, then

|F(z) − F(w)| > exp
(
|z−w|

8π

)
·
(
min{|Re F(z)|, |Re F(w)|}− R

)
.
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Next we introduce a subclass of B∗log consisting of the functions

F : T → H for which the image F(T) covers the whole T, which have

nicer properties.

Definition 3.25 (Disjoint type). We say that a function F : T → H in

the class B∗log is of disjoint type if T ⊆ H.

If f ∈ B∗ and A = C∗ \W is an annulus containing S(f), then

f(C∗ \V) ⊆ A, where V = f−1(W). In the case that f has a logarithmic

transform F that is of disjoint type (with H = exp−1(W)), we have

A ⊆ C∗ \ V and f(A) ⊆ A. Hence A ⊆ F(f) and it follows from the

classification of Fatou components that, in this situation, F(f) consists

of a single doubly connected component U which is the immediate

basin of attraction of an attracting fixed point in A.

Remark 3.26. Independently of [RRRS11], Barański showed that the

Julia set of bounded-type maps in the class B consists of disjoint hairs

that are homeomorphic to [0,+∞) (we call them dynamic rays) and

that the endpoints of these hairs are the only points in J(f) accessible

from F(f) [Bar07, Theorem C].

Example 3.27. The function f(z) = exp
(
0.3(z+ 1/z)

)
is in the class B∗

and has a logarithmic transform of disjoint type (see Figure 6).

Figure 6: Phase space of the function f(z) = exp
(
0.3(z + 1/z)

)
which has

a disjoint-type logarithmic transform (see Example 3.27). In or-

ange, the basin of attraction of the fixed point z0 ' 2.2373. Scale:

z ∈ [−16, 16] + i[−16, 16] (left), z ∈ [−0.3, 0.3] + i[−0.3, 0.3] (right).

Sometimes tracts exhibit better geometric properties that make them

easier to study. In the next section we will see that this is the case for

transcendental self-maps of C∗ of finite order.



68 dynamic rays of bounded-type functions

Definition 3.28 (Good geometry properties). Let F ∈ B∗log and let T

be a tract of F.

(a) We say that T has bounded wiggling if there exist K > 1 and

µ > 0 such that for every z0 ∈ T , every point z on the hyperbolic

geodesic of T that connects z0 to∞ satisfies

|Re z| >
1

K
|Re z0|− µ.

In the case K = 1 and µ = 0 we say that T has no wiggling. A

function F ∈ B∗log has uniformly bounded wiggling if the wiggling

of all tracts of F is bounded by the same constants K,µ.

(b) We say that T has bounded slope if there exist constants α,β > 0

such that

| Im z− Im w| 6 αmax{|Re z|, |Re w|}+β

for all z,w ∈ T . Equivalently, T contains a curve γ : [0,∞) → T

such that |F(γ(t))|→ ±∞ and

lim sup
t→∞

| Im γ(t)|

|Re γ(t)|
<∞.

We say that T has zero slope if this limit is zero.

We say F has good geometry if the tracts of F have bounded slope and

uniformly bounded wiggling.

Remark 3.29. (i) Observe that it is enough that a tract T from Tα,

α ∈ {0,∞}, has bounded slope to ensure that all tracts in Tα do.

We can use the same constants (α,β) for T∞ and T0: if they have

bounded slope with different values (α1,β1) and (α2,β2) it is

enough to take α := max{α1,α2} and β := max{β1,β2}.

(ii) If F,G ∈ B∗nlog and G has bounded slope, then G ◦ F has bounded

slope with the same constants as G.
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3.4 order of growth in C∗

Recall that the order of an entire function is defined to be the infimum

of ρ ∈ R ∪ {∞} such that log |f(z) | = O( |z |ρ) as z → ∞. Equiva-

lently,

ρ(f) = lim sup
r→+∞

log logM(r , f)
log r

,

where

M(r, f) := max
|z|=r

|f(z)| < +∞.

Polynomials have order zero and the function exp(zk), k ∈ N, has

order k. There are also transcendental entire functions of order zero

and of infinite order.

When we deal with holomorphic self-maps of C∗, controlling the

growth requires us to study how |f(z)| tends to zero or infinity when

z approaches zero or infinity. Observe that if f is such map, then 1/f

is also holomorphic on C∗, and

m(r, f) := min
|z|=r

|f(z)| =
1

M(r, 1/f)
> 0.

As before, for simplicity, we will write M(r) and m(r) when it is clear

what the function f is.

A priori, the notion of order of growth in this context involves the

following four quantities:

ρ∞max(f) := lim sup
r→+∞

log logM(r)
log r , ρ∞min(f) := lim sup

r→+∞
log(− logm(r))

log r ,

ρ0max(f) := lim sup
r→0

log logM(r)
− log r , ρ0min(f) := lim sup

r→0

log(− logm(r))
− log r .

However, if an entire function f has no zeros, then ρ(f) = ρ(1/f) as a

consequence of the fact that you can write the order in terms of the

Nevanlinna characteristic function T(R, f):

ρ(f) = lim sup
r→∞

log T(r, f)
log r

and Jensen’s formula says that

T(r, f) = T(r, 1/f) + log |f(0)|



70 dynamic rays of bounded-type functions

(see section 1.2 of [Hay64]). It follows from the general expression of

a transcendental self-map of C∗

f(z) = zn exp(g(z) + h(1/z)),

with n ∈ Z and g,h non-constant entire functions that

log |f(z)| = n log |z|+ Re g(z) + Re h(0) + o(1) as z→∞,

and therefore

logM(r, f) = logM(r, eg) +O(log r) as z→∞. (3.4)

Note that in a neighbourhood of infinity the term h(1/z) is not rele-

vant and the same happens with g(z) in a neighbourhood of the ori-

gin. Then, putting (3.4) into the four order quantities defined above

and using Jensen’s formula we obtain

ρ∞max(f) = ρ
∞
max(e

g) = ρ(eg) = ρ∞min(e
g) = ρ∞min(f) (3.5)

and, similarly, at zero

ρ0max(f) = ρ
∞
max(e

h) = ρ(eh) = ρ∞min(e
h) = ρ0min(f),

so, in fact, the order of growth of f involves only two quantities.

Definition 3.30 (Order of growth). Let f be a transcendental self-map

of C∗ of the form

f(z) = zn exp
(
g(z) + h(1/z)

)

with n ∈ Z and g,h non-constant entire functions. We say that f has

finite order if both quantities

ρ∞(f) := ρ(eg) and ρ0(f) := ρ(e
h)

are finite.

Example 3.31. The functions f(z) = zn exp(P(z)+Q(1/z)), with n ∈ Z

and P,Q polynomials, are transcendental self-maps of C∗ of finite or-

der and ρ∞(f) = degP and ρ0(f) = degQ.
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Remark 3.32. Keen [Kee88] defined the order of transcendental self-

maps of C∗ using

M̃(r, f) = max
z∈∂Ar

|f(z)| and m̃(r, f) = min
z∈∂Ar

|f(z)|

for r > 0, where Ar := {z ∈ C : 1/r < |z| < r}. It follows from the

maximum principle that M̃(r, f) and m̃(r, f) are respectively the maxi-

mum and minimum of |f(z)| in the whole annulus Ar (in the same

way that, for an entire function, we have M(r) = maxz∈D(0,r) |f(z)|).

In our notation,

M̃(r, f) = max{M(r), M(1/r)} and m̃(r, f) = min{m(r), m(1/r)}.

Next we will see that, in fact, every holomorphic self-map of C∗

that has finite order necessarily has to be of the form given in Exam-

ple 3.31. We will begin by stating a classical result concerning entire

functions of finite order due to Pólya [Pól25]; see also [Hay64, Theo-

rem 2.9].

Lemma 3.33. If f is a non-constant entire function of finite order with no

zeros, then f(z) = exp(h(z)) and h is a polynomial.

Using Lemma 3.33, we obtain the following.

Proposition 3.34. Every transcendental self-map of C∗ of finite order is of

the form

f(z) = zn exp(P(z) +Q(1/z))

for some n ∈ Z and P,Q ∈ C[z].

Keen proved the stronger result that every topological conjugacy

class of analytic self-maps of C∗ contains a function of this form

[Kee89, Theorem 1], but we give a direct proof of Proposition 3.34

for completeness.

Proof. We know that every transcendental self-map of C∗ is of the

form

f(z) = zn exp
(
g(z) + h(1/z)

)

for some n ∈ Z and g,h non-constant entire functions. Thus, by (3.5),

ρ(eg) = ρ∞(f) < +∞
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and so it follows from Lemma 3.33 that g has to be a polynomial. On

the other hand,

ρ(eh) = ρ0(f) < +∞
and so h has to be a polynomial as well. �

Keen also showed that, in C∗, finite order implies finite type [Kee89,

Proposition 2]. This is very different to what happens for the entire

case, where we have functions of finite order in the class B that are

not in the Speiser class S of finite-type transcendental entire functions.

An example of such a function is given by sin(z)/z which has order

one and infinitely many critical values in any open interval in R con-

taining the origin. We state Keen’s result for future reference.

Lemma 3.35. Let f be a transcendental self-map of C∗. If f has finite order

with ρ∞(f) = p and ρ0(f) = q, then sing(f−1) consists of at most p+ q

critical values together with the asymptotic values zero and infinity.

Finally, we show that the tracts of finite order functions have a fairly

simple geometry.

Proposition 3.36. Let f be a transcendental self-map of C∗ of finite order

and let F ∈ B∗nlog be a logarithmic transform of f. Then f has a finite number

of tracts and the tracts of F have zero slope and can be chosen to have no

wiggling.

Proof. Suppose that ρ∞(f) = p and ρ0(f) = q with p,q > 1. Then, by

Proposition 3.34,

f(z) = zn exp
(
P(z) +Q(1/z)

)
,

where n ∈ Z and P,Q are, respectively, polynomials of degree p,q.

We focus on the tracts whose closure in Ĉ contains infinity; the case

where the closure contains zero is similar. We have

|f(z)| = exp
(
Re (azp) + o(Re (zp))

)
as z→∞, (3.6)

where a ∈ C∗. Let φ = arg(a). For large values of R, the tracts of f

defined by |f(z)| > R are contained in the sectors determined by the

preimages of the imaginary axis by the map azp, that is, the radial

lines of angle (kπ+ π/2− φ)/p, k ∈ Z. Tracts that map to a neigh-

bourhood of infinity lie in the sectors containing the radial lines of
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angle (2kπ−φ)/p, 0 6 k < p, while tracts that map to a neighbour-

hood of zero lie in the sectors containing the radial lines of angle

((2k+ 1)π−φ)/p, 0 6 k < p. The preimages of radial lines by the ex-

ponential function are horizontal lines and hence the tracts of F are

contained in horizontal bands and have zero slope.

Finally, since the boundaries of the tracts tend asymptotically to

these horizontal lines, the tracts of F can be chosen to have no wig-

gling if R is sufficiently large. �

It follows from Proposition 3.34 that, in the punctured plane, func-

tions of finite order (as well as entire functions of finite order with no

zeros) can only have integer orders ρ0(f) and ρ∞(f). There are always

exactly 2ρ∞(f) asymptotic paths to infinity corresponding, asymptot-

ically, to the preimages of the positive (asymptotic value infinity) or

negative (asymptotic value zero) real line by zd where d = ρ∞(f).
Therefore the asymptotic paths alternate as you go around a circle

of large radius (see Figure 7). Similarly, in a neighbourhood of zero

there are 2ρ0(f) asymptotic paths with the same structure. Each of

these asymptotic paths is contained in a logarithmic tract and vice

versa.

Figure 7: Logarithmic tracts of functions of finite order with ρ∞(f) = 3 and

ρ0(f) = 2 (left) and infinite order (right). The colour of every point

z ∈ C∗ has been chosen according to the modulus (luminosity)

and argument (hue) of f(z).

Another basic property of entire functions in the class B is that

they have lower order greater than or equal to 1/2 [Hei48] (see also

[RS05a, Lemma 3.5]). This is due to the fact that f is bounded on a

path δ to infinity. Note that δ can be chosen to be any path that lies
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in the complement of the set of tracts of f. Recall that the lower order

of an entire function is

λ(f) := lim inf
r→+∞ log logM(r, f)

log r
.

If f is a transcendental self-map of C∗ we consider

λ∞(f) := lim inf
r→+∞ log logM(r, f)

log r
and λ0(f) := lim inf

r→0

log log 1/m(r, f)
log 1/r

.

Recall that Theorem 3.3 in Section 3.1 states that, in this setting,

λ0(f) = ρ0(f) and λ∞(f) = ρ∞(f). To prove this, we shall use the

Borel-Carathéodory theorem in the form given in [Val49, Theorem 8].

Lemma 3.37 (Borel-Carathéodory theorem). Let f be a transcendental

entire function and define, for r > 0,

B(r, f) := min
|z|=r

Re f(z), A(r, f) := max
|z|=r

Re f(z).

Then, there is r0 = r0(f) > 0 and C = C(f) > 0 such that

B(r) 6M(r) <
R

R− r

(
4A(R) +C

)

for all R > r > r0.

Proof of Theorem 3.3. Let f(z) = zn exp
(
g(z) +h(1/z)

)
with n ∈ Z and

g,h non-constant entire functions. We treat separately the cases where

the function f has finite order and infinite order. For simplicity we

only consider ρ∞(f) and λ∞(f); the proof for ρ0(f) and λ0(f) is com-

pletely analogous.

Suppose that ρ∞(f) = p < +∞. Then, by Proposition 3.34, g is a

polynomial and, by (3.6),

λ∞(f) = lim inf
r→+∞ log logM(r, f)

log r
= lim inf
r→+∞ logA(r,g)

log r
.

Since arp, a > 0, is an increasing function for r > 0, it is clear that

λ∞(f) = ρ∞(f).
Now suppose that ρ∞(f) = +∞. We use Lemma 3.37 with R = 2r:

there is C > 0 and r0 > 0 such that

M(r,g) < 2
(
4A(2r,g) +C

)
for all r > r0.
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Therefore, since g is a transcendental entire function, we have

lim inf
r→+∞ logA(r,g)

log r
> lim inf
r→+∞ logM(r/2,g)

log r
= lim
r→+∞ logM(r,g)

log r
= +∞

and so λ∞(f) = +∞. �

Observe that if F ∈ B∗log, then the tracts of F in each of the sets T0

and T∞ can be ordered with respect to the vertical position around

infinity. Therefore it makes sense to speak about a tract being in be-

tween two other tracts. This ordering is known as the lexicographic

order and we will come back to it later (see Definition 3.45).

3.5 symbolic dynamics and combinatorics

Maps in the class B∗log are defined on a set T, which is a union of

tracts, and, therefore, the orbits of some points in T are truncated if

Fk(z) /∈ T for some k ∈ N. We denote by J(F) the set of points that

can be iterated infinitely many times by F.

Definition 3.38 (Julia set of F). Let F : T → H be a map in class B∗log.

We define the Julia set of F to be

J(F) := {z ∈ T : Fn(z) is defined and in T for all n ∈N0},

and, for K > 0, we put

JK(F) := {z ∈ T : |Re Fn(z)| > K for all n ∈N0}.

As we will see in the following lemma, the reason why J(F) is called

the Julia set of F is that points in J(F) project to points in J(f) by the

exponential map. However, note that in the case that F ∈ B∗log is

a logarithmic transform of a function f ∈ B∗, there exists an entire

function f̃ that is a lift of f, and then J(F) ⊆ J(f̃) = exp−1 J(f) by a

result of Bergweiler [Ber95].

Lemma 3.39. Let f be a transcendental self-map of C∗ and let F ∈ B∗log be

a logarithmic transform of f. If F ∈ B∗nlog, then exp J(F) ⊆ J(f) and, if F is

of disjoint type, then exp J(F) = J(f).

Proof. Suppose to the contrary that z0 ∈ exp J(F) ∩ F(f) 6= ∅. Then,

proceeding as in the proof of Theorem 3.1, we get a contradiction
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between the expansivity of F given by (3.3) and the fact that T does not

contain vertical segments of length 2π. Note that in the normalised

case we use the expansivity of F with respect to the Euclidean metric,

that is, |F ′(z)| > 2 for all z ∈ T (see Lemma 3.21), while in the disjoint-

type case we use the expansivity with respect to the hyperbolic metric

on H because T is compactly contained in H.

If F is of disjoint type, the inclusion J(f) ⊆ exp J(F) follows from

the fact that f(C∗ \ V) ⊆ A and hence F(f) consists of the immediate

basin of attraction of an attracting fixed point in C∗ \ V, and so

J(f) = C∗ \
⋃

n∈N

f−n(C∗ \ V)

as required. �

Recall that in Definition 2.1 we defined the essential itinerary of a

point z ∈ I(f) to be the symbol sequence e = (en) ∈ {0,∞}N0 such

that

en :=


0, if |fn(z)| 6 1,

∞, if |fn(z)| > 1,

for all n ∈N0.

We now introduce the escaping set for a map F in the class B∗log,

which is a subset of the Julia set of F.

Definition 3.40 (Escaping set of F). Let F : T → H be a map in the

class B∗log. We define the escaping set of F to be

I(F) := {z ∈ J(F) : lim
n→∞ |Re Fn(z)| = +∞} = J(F)∩ exp−1 I(f).

In terms of F, a point z ∈ I(F) has essential itinerary e = (en) ∈ {0,∞}N0

if Re Fn(z) 6 0 if and only if en = 0 for all n ∈N0.

Observe that exp I(F) ⊆ I(f) and, in fact, every point in I(f) even-

tually enters exp I(F). As with J(F), if f is a transcendental self-map

of C∗ and f̃ is a lift of f, then I(F) ⊆ I(f̃) but, in general, these sets are

different, as f̃ may have points that escape in the imaginary direction

which correspond to bounded orbits for f.

For every function F ∈ B∗log, we denote by A (respectively A00,A∞0 ,

A0∞,A∞∞) the symbolic alphabet consisting of all tracts in T (respectively

T00 ,T∞0 ,T0∞,T∞∞ ; see Definition 3.18). We associate a symbol sequence
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(Tn) ∈ AN0 to each point z ∈ J(F) that describes to which tract the

iterate Fn(z) belongs for all n ∈N0.

Definition 3.41 (External address of F). Let F ∈ B∗log and let z ∈ J(F).
We define the external address of z, addrF(z), to be the symbol se-

quence s = (Tn) ∈ AN0 such that Fn(z) ∈ Tn for all n ∈N0.

Remark 3.42. Let F be a normalised logarithmic transform. Then the

Bernoulli shift map σ : AN0 → AN0 mapping the external address (Tn)

to (Tn+1) is a subshift of finite type on the set

AN0 = (A∞0 ×AN)t (A∞∞ ×AN)t (A00 ×AN)t (A0∞ ×AN),

where, if e0, e1 ∈ {0,∞}, the set Ae1e0 ×AN consists of the sequences in

AN0 whose first symbol is in A
e1
e0 . Observe that the transition graph

of σ is
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where, if e0, e1 2 {0,1}, the set Ae1
e0
⇥ AN consists of the sequences in AN whose

first symbol is in Ae1
e0

. Observe that the transition graph of � is

A1
0 ⇥ AN //

&&NNNNNNNNNN A1
1 ⇥ AN

✏✏

bb

"" A0
0 ⇥ AN

OO

A0
1 ⇥ ANoo

ffNNNNNNNNNN

and, in particular, not all sequences in AN are external addresses of points in J(F ).

We now introduce the notion of admissible external address. Only admissible
external addresses can be the external address of a point in J(F ).

Definition 5.7 (Admissible external address). We say that an external address
s 2 AN is admissible if s belongs to the set

⌃e :=
Y

n2N

Aen+1
en

= {(Tn) : Tn 2 Aen+1
en

for all n 2 N},

for some e = (en) 2 {0,1}N. In this case, we say that the external address s has
essential itinerary e. We denote by ⌃ the set of all admissible external addresses.
If e 2 {0,1}N and K > 0, we define the following sets

Je(F ) := {z 2 J(F ) : addr(z) 2 ⌃e},

JK
e (F ) := Je(F ) \ JK(F ) and Ie(F ) := Je(F ) \ I(F ).

Note that, if we define

A0 := A0
0 t A1

0 and A1 := A0
1 t A1

1.

then an external address s = (Tn) 2 ⌃ has essential itinerary e = (en) provided
that Tn 2 A0 if and only if en = 0. In terms of essential itineraries, the corre-
sponding transition graph is the complete graph on two vertices,

## A0 ⇥ T N // A1 ⇥ T Noo bb .

If F 2 B⇤n
log, then z 2 I(F ) has essential itinerary e if and only if addr(z) has

essential itinerary e. However, if F is not normalised, these two sequences may be
different for a certain number of iterates (see Lemma 7.6).

There is a natural way to order the tracts with respect to the vertical position
that they are attached to infinity. Using this, we can endow the set of sequences Ae

with the lexicographic order.

Definition 5.8 (Lexicographic order). Let F : T ! H be in the class B⇤
log. If

T, T 0 2 T1, then we say that T < T 0 if T 0 is in the upper connected component of
the intersection of a right half-plane and the complement of T . If T, T 0 2 T0, then
we say that T < T 0 if T 0 is in the lower connected component of the intersection
of a left half-plane and the complement of T . Finally, if s, s0 2 Ae for some
e 2 {0,1}N, then we say that s < s0 if there is k 2 N such that Tn = T 0

n for all
n < k and Tk < T 0

k.

DYNAMIC RAYS OF BOUNDED-TYPE FUNCTIONS IN C⇤ 23

where, if e0, e1 2 {0,1}, the set Ae1
e0
⇥ AN consists of the sequences in AN whose

first symbol is in Ae1
e0

. Observe that the transition graph of � is

A1
0 ⇥ AN //

&&NNNNNNNNNN A1
1 ⇥ AN

✏✏

bb

"" A0
0 ⇥ AN

OO

A0
1 ⇥ ANoo

ffNNNNNNNNNN

and, in particular, not all sequences in AN are external addresses of points in J(F ).

We now introduce the notion of admissible external address. Only admissible
external addresses can be the external address of a point in J(F ).

Definition 5.7 (Admissible external address). We say that an external address
s 2 AN is admissible if s belongs to the set

⌃e :=
Y

n2N

Aen+1
en

= {(Tn) : Tn 2 Aen+1
en

for all n 2 N},

for some e = (en) 2 {0,1}N. In this case, we say that the external address s has
essential itinerary e. We denote by ⌃ the set of all admissible external addresses.
If e 2 {0,1}N and K > 0, we define the following sets

Je(F ) := {z 2 J(F ) : addr(z) 2 ⌃e},

JK
e (F ) := Je(F ) \ JK(F ) and Ie(F ) := Je(F ) \ I(F ).

Note that, if we define

A0 := A0
0 t A1

0 and A1 := A0
1 t A1

1.

then an external address s = (Tn) 2 ⌃ has essential itinerary e = (en) provided
that Tn 2 A0 if and only if en = 0. In terms of essential itineraries, the corre-
sponding transition graph is the complete graph on two vertices,

## A0 ⇥ T N // A1 ⇥ T Noo bb .

If F 2 B⇤n
log, then z 2 I(F ) has essential itinerary e if and only if addr(z) has

essential itinerary e. However, if F is not normalised, these two sequences may be
different for a certain number of iterates (see Lemma 7.6).

There is a natural way to order the tracts with respect to the vertical position
that they are attached to infinity. Using this, we can endow the set of sequences Ae

with the lexicographic order.

Definition 5.8 (Lexicographic order). Let F : T ! H be in the class B⇤
log. If

T, T 0 2 T1, then we say that T < T 0 if T 0 is in the upper connected component of
the intersection of a right half-plane and the complement of T . If T, T 0 2 T0, then
we say that T < T 0 if T 0 is in the lower connected component of the intersection
of a left half-plane and the complement of T . Finally, if s, s0 2 Ae for some
e 2 {0,1}N, then we say that s < s0 if there is k 2 N such that Tn = T 0

n for all
n < k and Tk < T 0

k.

DYNAMIC RAYS OF BOUNDED-TYPE FUNCTIONS IN C⇤ 23

where, if e0, e1 2 {0,1}, the set Ae1
e0
⇥ AN consists of the sequences in AN whose

first symbol is in Ae1
e0

. Observe that the transition graph of � is

A1
0 ⇥ AN //

&&NNNNNNNNNN A1
1 ⇥ AN

✏✏

bb

"" A0
0 ⇥ AN

OO

A0
1 ⇥ ANoo

ffNNNNNNNNNN

and, in particular, not all sequences in AN are external addresses of points in J(F ).

We now introduce the notion of admissible external address. Only admissible
external addresses can be the external address of a point in J(F ).

Definition 5.7 (Admissible external address). We say that an external address
s 2 AN is admissible if s belongs to the set

⌃e :=
Y

n2N

Aen+1
en

= {(Tn) : Tn 2 Aen+1
en

for all n 2 N},

for some e = (en) 2 {0,1}N. In this case, we say that the external address s has
essential itinerary e. We denote by ⌃ the set of all admissible external addresses.
If e 2 {0,1}N and K > 0, we define the following sets

Je(F ) := {z 2 J(F ) : addr(z) 2 ⌃e},

JK
e (F ) := Je(F ) \ JK(F ) and Ie(F ) := Je(F ) \ I(F ).

Note that, if we define

A0 := A0
0 t A1

0 and A1 := A0
1 t A1

1.

then an external address s = (Tn) 2 ⌃ has essential itinerary e = (en) provided
that Tn 2 A0 if and only if en = 0. In terms of essential itineraries, the corre-
sponding transition graph is the complete graph on two vertices,

## A0 ⇥ T N // A1 ⇥ T Noo bb .

If F 2 B⇤n
log, then z 2 I(F ) has essential itinerary e if and only if addr(z) has

essential itinerary e. However, if F is not normalised, these two sequences may be
different for a certain number of iterates (see Lemma 7.6).

There is a natural way to order the tracts with respect to the vertical position
that they are attached to infinity. Using this, we can endow the set of sequences Ae

with the lexicographic order.

Definition 5.8 (Lexicographic order). Let F : T ! H be in the class B⇤
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and, in particular, not all sequences in AN0 are external addresses of

points in J(F).

We now introduce the notion of admissible external address. Only

admissible external addresses can be the external address of a point

in J(F).

Definition 3.43 (Admissible external address). We say that an exter-

nal address s ∈ AN0 is admissible if s belongs to the set

Σe :=
∏
n∈N

A
en+1
en = {(Tn) : Tn ∈ A

en+1
en for all n ∈N0},

for some e = (en) ∈ {0,∞}N0 . In this case, we say that the external

address s has essential itinerary e. We denote by Σ the set of all admis-

sible external addresses.

Note that, if we define

A0 := A00 tA∞0 and A∞ := A0∞ tA∞∞
then an external address s = (Tn) ∈ Σ has essential itinerary e = (en)

provided that Tn ∈ A0 if and only if en = 0. In terms of essential
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itineraries, the corresponding transition graph is the complete graph

on two vertices,

  A0 × TN //
A∞ × TNoo bb .

If F ∈ B∗nlog, then z ∈ I(F) has essential itinerary e if and only if

addr(z) has essential itinerary e. However, if F is not normalised,

these two sequences may be different for a certain number of iterates

(see Lemma 3.59).

For every admissible external address, we introduce the set of points

that have that external address. Note that sometimes we use the term

external address to denote a general sequence in Σ, without being

necessarily the external address of any point z ∈ J(F). Therefore, some

of the following sets may be empty. In Definition 2.2, for e ∈ {0,∞}N0 ,

we defined I0,0
e (f) to be the set of escaping points whose essential

itinerary is exactly e and we defined Ie(f) to be the set of escaping

points whose essential itinerary is eventually a shift of e.

Definition 3.44 (Subsets of J(F)). Let F be a function in the class B∗log.

For s ∈ Σ and K > 0, we define the sets

Js(F) := {z ∈ J(F) : addrF(z) = s},

JKs (F) := Js(F) ∩ JK(F) and Is(F) := Js(F) ∩ I(F). For e ∈ {0,∞}N0 and

K > 0, we define the sets

Je(F) := {z ∈ J(F) : addrF(z) ∈ Σe} =
⋃

s∈Σe

Js(F),

JKe (F) := Je(F)∩ JK(F) and Ie(F) := Je(F)∩ I(F). If F is normalised, then

Ie(F) = J(F)∩ exp−1
(
I0,0
e (f)

)
.

There is a natural way to order the tracts with respect to the vertical

position that they are attached to infinity. Using this, we can endow

the set of sequences Σe with the lexicographic order.

Definition 3.45 (Lexicographic order). Let F : T → H be a map in the

class B∗log. If T , T ′ are components of T∞, then we say that T < T ′ if

T ′ is in the upper connected component of the intersection of a right

half-plane and the complement of T . If T , T ′ are components of T0,

then we say that T < T ′ if T ′ is in the lower connected component of
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the intersection of a left half-plane and the complement of T . Finally,

if s, s ′ ∈ Σe for some e ∈ {0,∞}N0 , then we say that s < s ′ if there is

k ∈N0 such that Tn = T ′n for all n < k and Tk < T ′k.

The set Σe endowed with the lexicographic order is a totally or-

dered space. Observe that, since the function F preserves orientation,

if T1 < T2 in T∞ and T is a component of T0, then with the lexico-

graphic ordering we have F−1
|T

(T1) < F
−1
|T

(T2).

Sometimes it will be useful to consider a partition of the tracts

of a function in the class B∗ (and its logarithmic transforms) into

fundamental domains. The following terminology was introduced by

Rempe in [Rem08].

Definition 3.46 (Fundamental domain). Let f ∈ B∗ and let F : T → H

be a logarithmic transform of f that is in the class B∗log. Let δ ⊆ C∗ \V

be the curve joining zero to infinity from Theorem 3.20.

(i) The set exp−1 δ defines infinitely many fundamental strips Sn,

n ∈ Z. Every tract of F is contained in a fundamental strip.

(ii) For each tract Tn of F, the restriction F|Tn : Tn → H is a one-to-one

covering of either H0 or H∞. Hence, the set F−1
|Tn

(
H \ exp−1 δ

)

has infinitely many components Fn,i ⊆ Tn, i ∈ Z, that we call

fundamental domains of F.

(iii) Similarly, the preimages f−1(δ) divide each tract Vn of f into

infinitely many sets Dn,i = exp Fm,i ⊆ Vn, i ∈ Z, for some

m ∈ Z, that we call fundamental domains of f.

Note that sometimes we will refer to a sequence of fundamental

domains using only one subindex when we do not need to specify

whether two fundamental domains are a subset of the same tract or

not.

Since the orbit of every point in J(F) avoids exp−1(δ), we can de-

fine external addresses in terms of fundamental domains rather than

tracts. This is the approach followed, for example, by Benini and Fag-

ella [BF15]. However, since the image of each fundamental domain is

contained in a fundamental strip, the fundamental domain Fn is de-

termined by the tract Tn that contains Fn and the fundamental strip

containing the next tract Tn+1. Thus, considering external addresses
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Figure 8: Fundamental domains of a function f in the class B∗.

of fundamental domains does not add more information to the sym-

bolic dynamics of F.

We can also consider external addresses for functions f ∈ B∗ rather

than for their logarithmic transforms. In this case, specifying the se-

quence of tracts in V does not capture the whole combinatorics of f;

we define the external addresses of f in terms of fundamental do-

mains. Let Af denote the symbolic alphabet consisting of the funda-

mental domains of f.

Definition 3.47 (External address of f). Let f ∈ B∗ and let F ∈ B∗log be

a periodic logarithmic transform of f. If z = expw, where w ∈ J(F), we

define the external address (under f) of z, addrf(z), to be the symbol

sequence t = (Dn) ∈ A
N0

f such that fn(z) ∈ Dn for all n ∈N0.

The next lemma describes the correspondence between external

addresses of f and external addresses of a logarithmic transform F

of f (see [BF15, Lemma 2.9]).

Lemma 3.48. Let f ∈ B∗ and let F ∈ B∗log be a logarithmic transform of f.

If z = expw, then the external address addrf(z) = (Dn) is uniquely deter-

mined by the external address addrF(w) = (Tn). Conversely, if we have

addrf(z) = (Dn), then addrF(w) = (Tn) is unique up to replacing T0 by

a 2kπi-translate of T0 for some k ∈ Z.

Proof. Let (Tn) be a sequence of tracts of F, then the sequence of fun-

damental domains (Dn) ⊆ V is given by Dn = exp Fn which, in turn,

is determined by Tn and Tn+1.

On the other hand, if (Dn) is a sequence of fundamental domains

of f, then the tract T0 ⊇ F0, where exp F0 = D0, is given by the

choice of the logarithmic transform F, which is unique up to addition
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of integer multiples of 2πi, and the rest of tracts in the sequence (Tn)

are determined by the fact that Tn is the only tract in the fundamental

strip F(Fn−1) containing a component of exp−1(Dn). �

We say that a sequence of fundamental domains (Dn) of f is ad-

missible if it corresponds to an admissible external address s ∈ Σ. In

this chapter we use external addresses in terms of tracts mostly and

restrict the use of fundamental domains to the times when we need

them, in order to keep the notation simple.

3.6 unbounded continua in the julia set

A priori, the set Js(F) may be empty for some external addresses

in s ∈ Σ. Recall that Rippon and Stallard [RS05b] showed that, for a

general transcendental entire function f, the components of the fast es-

caping set A(f) ⊆ I(f) are all unbounded. Using similar ideas, Rempe

showed that if f ∈ B (and the same argument works for class Blog),

then every tract T contains an unbounded closed connected set A con-

sisting of points that escape within T [Rem08, Theorem 2.4]. Some-

times we refer to an unbounded closed connected set X ⊆ C as

an unbounded continuum; note, however, that such set is not a conti-

nuum in C as it is not compact, but X∪ {∞} is a continuum in Ĉ (see

Lemma 3.50).

Although [Rem08, Theorem 2.4] only concerns points that escape

within a tract, if s ∈ AN0 is a periodic external address, then it fol-

lows that Js(F) contains an unbounded continuum of escaping points.

Indeed, if s = T0T1 . . . Tp−1 has period p ∈ N and Tk, 0 6 k < p,

are tracts of F, then there is a tract T of Fp contained in T0 such that

Fk(T) ⊆ Tk, 1 6 k < p, and the result follows from applying [Rem08,

Theorem 2.4] to Fp in T .

It was remarked in [BJR12, p. 2107] that if s ∈ AN0 contains only

finitely many symbols, then [Rem08, Theorem 2.4] can be adapted

to show that Js(F) 6= ∅ and hence Js(F) contains an unbounded conti-

nuumA; see [BF15, Proposition 2.11] for a detailed proof of this result.

In [Rem07], Rempe showed that the set A can be chosen to be forward

invariant. Later on, [BRS08, Theorem 1.1] generalised the result of
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Rempe for transcendental meromorphic functions in C with tracts

(not necessarily in the class B).

For transcendental self-maps of C∗, the components of the fast es-

caping set are unbounded in C∗ (see Theorem 2.9). We recall that a set

X ⊆ C∗ is unbounded if its closure X̂ in Ĉ contains zero or infinity. The

following lemma is a combination of Theorems 2.4 and 2.9 and fol-

lows from the constructions in their proofs. Recall that I0,0
e (f) ⊆ Ie(f)

is the set of escaping points whose essential itinerary is exactly e.

Lemma 3.49. Let f be a transcendental self-map of C∗. For each essential

itinerary e = (en) ∈ {0,∞}N0 , there exists an unbounded closed connected

set Ae ⊆ I0,0
e (f) which consists of fast escaping points and whose closure

Âe in Ĉ contains zero or infinity depending on the value of e0.

Lemma 3.49 implies that the set Je(F) contains at least one un-

bounded component. The goal of this section is to show that, under

certain hypotheses, the set Js(F) contains an unbounded continuum.

We begin by stating the boundary bumping theorem [Nad92, Theo-

rem 5.6] (see also [RRRS11, Theorem A.4]) which implies that if X ⊆ Ĉ

is a compact connected set containing zero or infinity and E = X∩C∗,

then every component of E is unbounded in C∗.

Lemma 3.50 (Boundary bumping theorem). Let X be a non-empty com-

pact connected metric space and let E ( X be non-empty. If C is a connected

component of E, then ∂C ∩ ∂E 6= ∅ (where boundaries are taken relative

to X).

First we show that if JKs (F) 6= ∅ for sufficiently large K > 0, then the

set Js(F) contains an unbounded continuum. The following proposi-

tion is the analogue of [RRRS11, Lemma 3.3] for the class B∗log. We

include the proof for completeness.

Proposition 3.51. Let F ∈ B∗log. There exists K1(F) > 0 such that if

K > K1(F), for every s ∈ Σ, if z0 ∈ JKs (F), then there exists an unbounded

closed connected set A ⊆ Js(F) with dist (z0,A) 6 2π.

Proof. We may assume without loss of generality that F is normalised

with H= H±R for some R > 0. Let K1(F) > 0 be large enough that

if K > K1(F), then all bounded components of H ∩ T are in the

vertical band VK := {z ∈ C : |Re z| < K}. Note that the set VK can only

intersect a finite number of tracts in each fundamental strip.
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Let Y ⊆ C be an unbounded continuum such that Y \B(Fk(z0), 2π)

has exactly one unbounded component. In that case we denote this

component by Xk(Y). Let s = (Tn) ∈ Σ. For all k > 1, we have that

∅ 6= Xk(Tk) ⊆ H and hence F−1
|Tk−1

maps Xk(Tk) into Tk−1. By the

expansivity property (3.3), since dist
(
Fk(z0),Xk(Tk)

)
= 2π, we have

that dist
(
Fk−1(z0), F−1Tk−1

(
Xk(Tk)

))
6 π and Xk−1

(
F−1Tk−1

(
Xk(Tk)

))
6= ∅.

Thus we can define the sets

Ak := X0
(
F−1T0

(
· · ·
(
Xk−1

(
F−1Tk−1

(
Xk(Tk)

)))
· · ·
))

for k > 1,

and we put A0 := X0(T0). Observe that here we are using the fact that

s ∈ Σ because F−1Tk is only defined in one of the two components of H.

Let Âk denote the closure of Ak in Ĉ which is a continuum. By

construction, Âk+1 ⊆ Âk and dist(z0,Ak) 6 π, thus

A ′ :=
⋂

k>0

Âk

is a continuum in Ĉ and A ′ \ {0,∞} has a component A such that

dist(z0,A) 6 2π. Finally, by Lemma 3.50, the set A is unbounded

in C∗ . �

Next we show that, as in the entire case, if an external address

s ∈ Σ has only finitely many symbols, then the set Js(F) contains an

unbounded continuum. Note that in contrast to the previous propo-

sition, now we need to show that Js(F) 6= ∅. We use the follow-

ing lemma which is the analogue of [BF15, Proposition 2.6] for the

class B∗.

Lemma 3.52. Let F ∈ B∗log have good geometry and let F be a finite union

of fundamental domains of F. Then for any K > 0 sufficiently large,

F−1
(
{z ∈ C : |Re z| = K}

)
∩F ⊆ {z ∈ C : |Re z| < K}.

In the following proposition we adapt the proof of [BF15, Proposi-

tion 2.11] to our setting. This is based on the ideas of [Rem08, Theo-

rem 2.4] and will be used later to prove Theorem 3.7.

Proposition 3.53. Let F ∈ B∗log. There exists K2(f) > 0 such that if

K > K2(F) and s ∈ Σ contains finitely many different symbols, then the

set JKs (F) contains a continuum whose points have unbounded real part.
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Proof. Suppose that s = (Tn) contains N different symbols for tracts

Ts1 , . . . , TsN from T, N ∈ N, and choose fundamental domains Fsj,k ⊆
Tsj , 1 6 j 6 N, so that F(Fsj,k) ⊇ Tsk. Let F denote the finite collection

of fundamental domains {Fsj,k}16j6N and assume that K2 = K2(F) >

0 is sufficiently large that Lemma 3.52 holds for F and K > K2(F).

Then define (Fn) to be the sequence of fundamental domains from F

satisfying Fn ⊆ Tn and Tn+1 lies in F(Fn).

Let X0 be the unbounded component of F0 ∩H±K and, for each

n > 0, let Xn be the unique unbounded component of

F−1
|F0

(
· · ·
(
F−1
|Fn−2

(
F−1
|Fn−1

(Fn)∩H±K
)
∩H±K

)
· · ·
)
∩H±K ,

where F−1
|Fn

is the branch of F−1 that maps the fundamental strip

F(Fn) ⊆ H in which Fn+1 lies to the fundamental domain Fn ⊆ Tn.

Note that since F is entire, F−1
|Fn

maps unbounded sets to unbounded

sets.

Lemma 3.52 tells us that F−1(∂H±K) ∩ F ⊆ C \ H±K and therefore

for each Fn ∈ F, necessarily Fn ∩ ∂H±K 6= ∅. Furthermore, if Y is

an unbounded continuum with Y ∩ ∂H±K 6= ∅, then, by Lemma 3.52,

F−1
|Fn

(Y) ∩ ∂H±K 6= ∅. Thus, since Fn ∩ ∂H±K 6= ∅, we have that

Xn ∩ ∂H±K 6= ∅ for all n ∈N0.

As before, let X̂n be the closures of Xn in Ĉ and define

X ′ :=
⋂

k∈N0

X̂n

which is an unbounded continuum. Since all the unbounded continua

X̂n intersect ∂H, X ′ \ {0,∞} has a component X that intersects ∂H±K

and is unbounded by Lemma 3.50. �

In particular, Proposition 3.53 covers all the periodic external ad-

dresses in Σ. Observe that by considering external addresses that

consist of fundamental domains instead of tracts we would obtain

the result that for all such sequences containing only finitely many

different fundamental domains of f there is an unbounded contin-

uum consisting of escaping points whose orbit lies in that sequence

of fundamental domains.
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3.7 properties of dynamic rays

In Theorem 3.1 we showed that bounded-type functions have no es-

caping Fatou components. Instead, escaping points often lie in curves

tending to the essential singularities called dynamic rays or, some-

times, hairs such that in every unbounded proper subset of them, a

ray tail, points escape uniformly. We say that a dynamic ray is broken

if one of its forward iterates contains a critical point; this concept was

introduced in [BF15, Definition 2.2].

Definition 3.54 (Dynamic ray). Let f be a transcendental self-map

of C∗. A ray tail of f is an injective curve

γ : [0,+∞)→ I(f)

such that fn(γ(t)) → {0,∞} as t → +∞ for all n ∈ N0 and also

fn(γ(t)) → {0,∞} uniformly in t as n → ∞. A dynamic ray of f is a

maximal injective curve

γ : (0,+∞)→ I(f)

such that γ|[t,+∞) is a ray tail for every t > 0. Similarly, we can define

ray tails for any logarithmic transform F of f, which is only defined

on the set T, and dynamic rays for any lift f̃ of f. We shall abuse the

notation and use γ for both the ray as a set and its parametrization.

We say that a dynamic ray γ is broken if fn(γ) contains a critical

point for n ∈ N0. A non-broken ray γ is said to land if γ \ γ consists

of a single point or, in other words, if γ(t) has a limit as t → 0. We

say that a dynamic ray γ is periodic if there exists p ∈ N such that

fp(γ) = γ. If f(γ) = γ, then we say that γ is an invariant dynamic ray.

Example 3.55. We give a couple of straightforward examples of dy-

namic rays in C∗.

(i) The positive real line is an invariant dynamic ray for the func-

tion f(z) = exp(z+ 1/z), and points escape to infinity under iter-

ation. This is an example of a broken ray because the function f

has a critical point at z = 1.

(ii) If we now consider the function g(z) = exp(−z+ 1/z), the posi-

tive real line is again forward invariant but z = 1 is a repelling
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fixed point of g. In this case, the intervals (0, 1) and (1,+∞)

form a cycle of 2-periodic non-broken dynamic rays.

Observe that dynamic rays can land at an essential singularity and

the limits of γ(t) as t → 0 and t → +∞ may even coincide. The dy-

namic ray from the following example is non-broken and goes from

zero to infinity.

Example 3.56. The positive real line is an invariant non-broken dyna-

mic ray for the function f(z) = z exp
(
z2 + exp(−1/z2)

)
(see Figure 9).
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Figure 9: On the left, phase space of the function f(z)=z exp(z2 + exp(−1/z2))

from Example 3.56. On the right, the graph of the restriction of

this function to the positive real line.

Since the exponential function is a local homeomorphism, we have

the following correspondence between dynamic rays of transcenden-

tal self-maps of C∗ and those of their lifts.

Lemma 3.57. Let f be a transcendental self-map of C∗ and let f̃ be a lift

of f. Then γ is a dynamic ray of f if and only if any connected component γ̃

of exp−1 γ is a dynamic ray of f̃. Furthermore, γ lands or is broken if and

only if γ̃ lands or is broken, respectively.

It is a well-known result for entire functions that if the postsingular

set is bounded then all periodic dynamic rays land. This was first

proved for the exponential family [SZ03b; Rem06]. Rempe proved a

more general version of the result for Riemann surfaces that applies to

maps in the classes B and B∗ [Rem08, Theorem B.1]; see also [Den14,

Theorem 1.1] for an alternative proof of this result for the class B. The

same techniques imply the following result in our setting.
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Proposition 3.58. Let f ∈ B∗ with postsingular set P(f) bounded away

from zero and infinity. Then all periodic dynamic rays of f land, and the

landing points are either repelling or parabolic periodic points of f.

Next we show that, since points in ray tails escape uniformly, each

dynamic ray is contained in a set Ie(f) for some essential itinerary

e ∈ {0,∞}N0 .

Lemma 3.59. Let f be a transcendental self-map of C∗ and let γ be a dyna-

mic ray of f. Then, for every ray tail γ ′ ⊆ γ, there is ` ∈ N0 such that all

the points in f`(γ ′) have the same essential itinerary. Hence, there exists an

essential itinerary e ∈ {0,∞}N0 such that γ ⊆ Ie(f).

Proof. By definition, ray tails escape uniformly and hence, if γ ′ is a

ray tail, there is ` ∈ N such that fn(γ ′) ∩ S1 = ∅ for all n > `. Then,

all points in f`(γ ′) have the same essential itinerary; that is, in the

notation of Section 2.1, γ ′ ⊆ I`,0e (f) for some e ∈ {0,∞}N0 .

Now suppose that γ is a dynamic ray with z1 ∈ γ ∩ Ie1(f) and

z2 ∈ γ ∩ Ie2(f). Then there is a ray tail γ ′ ⊇ {z1, z2} and ` ∈ N

such that all points in f`(γ ′) have the same essential itinerary. Thus,

e1 ∼= e2 and γ ⊆ Ie1(f) = Ie2(f). �

Actually, since all the images of a dynamic ray are unbounded

in C∗, dynamic rays are asymptotically contained in tracts which are

preimages of the neighbourhood W of the set {0,∞}. Furthermore,

each dynamic ray is asymptotically contained in exactly one of the

fundamental domains of the function F.

In the following proposition we show that, in order to prove Theo-

rem 3.4, we only require that every escaping point has an iterate that

is on a ray tail (see [RRRS11, Proposition 2.3]).

Proposition 3.60. Let f be a transcendental self-map of C∗ and let z0 ∈ I(f).
Suppose that some iterate fk(z0), k ∈ N0, is on a ray tail γk of f. Then ei-

ther z0 is on a ray tail, or there is some n 6 k such that fn(z0) belongs to

a ray tail that contains an asymptotic value of f.

Proof. Suppose that γk : [0,∞) → C∗ is a parametrization of such a

ray tail and γk(0) = fk(z0). Let γk−1 : [0, T) → C∗ be a maximal lift

of γk such that γk−1(0) = fk−1(z0) and f(γk−1(t)) = γk(t). If T =∞,
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then γk−1(t) must tend to zero or infinity as t → +∞, otherwise we

would have γk−1(t)→ a ∈ C∗ as t→ +∞, so

f(a) = f

(
lim
t→+∞γk−1(t)

)
= lim
t→+∞ f (γk−1(t)) = lim

t→+∞γk(t) ∈ {0,∞}

which is a contradiction. Thus, f(k−1)(z0) is on a ray tail. Now con-

sider the case that T <∞ and let

w := lim
t→T

γk−1(t) ∈ Ĉ.

Again, it cannot happen that f(w) ∈ {0,∞} because γk(T) would be

an asymptotic value, so f(w) = γk(t0) for some t0 ∈ [0,∞). In this

case, γk−1 could be extended, contradicting its maximality. Note that

if w was a critical point we would need to choose a branch of f−1.

Thus, w ∈ {0,∞} and γk(T) is an asymptotic value of f (possibly zero

or infinity). Then either we have a ray tail γk−1 ⊆ f−1(γk) ⊆ I(f) con-

necting f(k−1)(z) to one of the essential singularities or γk contains

an asymptotic value. The result follows from applying the above rea-

soning inductively. �

Note that Proposition 3.60 can also be proved by applying its ver-

sion for entire functions to a lift f̃ of f and then use the correspon-

dence from Lemma 3.57.

We conclude this section by stating a result about escaping points

that follows from the expansivity property (3.3) in Lemma 3.21 (see

[RRRS11, Lemma 3.2] for the analogous result for entire functions).

Lemma 3.61. Let F : T → H be in the class B∗nlog with H = H±R for some

R > 0. If z,w ∈ Js(F) for some external address s and z 6= w, then

lim
k→+∞max{|Re Fk(z)|, |Re Fk(w)|} = +∞. (3.7)

Observe that (3.7) does not imply that neither the point z nor w

escape because both points may have an unbounded orbit but with a

subsequence where their iterates are bounded. In the next section we

will introduce a condition for F (see Definition 3.62) which implies

that, in the situation of Lemma 3.61, both points z and w escape, and

hence all points in Js(F) except possibly one must escape.

Lemma 3.24, Lemma 3.61 and Proposition 3.51 correspond, respec-

tively, to Lemma 3.1, Lemma 3.2 and Theorem 3.3 in [RRRS11, Sec-
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tion 3] and constitute the main tools to prove Theorem 3.4 in the next

section.

3.8 escaping points and dynamic rays

In this section we adapt the results in [RRRS11, Sections 4 and 5]

to our setting. Since the proof Theorem 3.4 follows closely that of

[RRRS11, Theorem 1.2], we only sketch it and emphasize the diffe-

rences between them.

The head-start condition is designed so that every escaping point

is mapped eventually to a ray tail and hence we are able to apply

Proposition 3.60 and conclude that either the point itself is in a ray

tail or some iterate is in a ray tail that contains a singular value.

Definition 3.62 (Head-start condition). Let F : T → H be a function in

the class B∗log. We first define the head-start condition for tracts, then

for external addresses and finally for logarithmic transforms.

• Let T , T ′ be two tracts in T and let ϕ : R+ → R+ be a (not

necessarily strictly) monotonically increasing continuous func-

tion with ϕ(x) > x for all x ∈ R+. We say that the pair (T , T ′)

satisfies the head-start condition for ϕ if, for all z,w ∈ T with

F(z), F(w) ∈ T ′,

|Re w| > ϕ(|Re z|)⇒ |Re F(w)| > ϕ(|Re F(z)|).

• We say that an external address s = (Tn) ∈ Σ satisfies the head-

start condition for ϕ if all consecutive pairs of tracts (Tn, Tn+1)

satisfy the head-start condition for ϕ, and if for all distinct

z,w ∈ Js(F), there is M ∈ N0 such that either |Re FM(z)| >

ϕ(|Re FM(w)|) or |Re FM(w)| > ϕ(|Re FM(z)|).

• We say that F satisfies a head-start condition if every external ad-

dress of F satisfies the head-start condition for some ϕ. If the

same function ϕ can be chosen for all external addresses, we

say that F satisfies the uniform head-start condition for ϕ.

Notice that in the second part we require that the head-start con-

dition cannot be a void condition for any itinerary. Furthermore, if
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|Re FM(z)| > ϕ(|Re FM(w)|) and the head-start condition is satisfied

for all consecutive pairs of tracts (Tn, Tn+1) for n >M, then we have

|Re Fn(z)| > ϕ(|Re Fn(w)|) for all n > M.

The head-start condition allows us to order the points in Js(F) by

the growth of the absolute value of their real parts.

Definition 3.63 (Speed ordering). Let s ∈ Σ be an external address

satisfying the head-start condition for a function ϕ. For z,w ∈ Js(F),
we say that z � w if there exists K ∈ N0 such that |Re FK(z)| >

ϕ(|Re FK(w)|). We extend this order to the closure Ĵs(F) in Ĉ by the

convention that 0,∞ � z for all z ∈ Js(F).

Note that although a dynamic ray may contain both zero and infi-

nity in its closure in Ĉ, ray tails are a subset of T and hence their

closure contains either zero or infinity.

The head-start condition implies that the speed ordering is a total

order on the set Ĵs(F): if there were two values M1,M2 ∈ N0 such

that |Re FM1(z)| > ϕ(|Re FM1(w)|) and |Re FM2(w)| > ϕ(|Re FM2(z)|)

then we would get a contradiction because once we are in one of these

situations and the head-start condition is satisfied then it is preserved

by iteration, that is, for example, if |Re FM1(z)| > ϕ(|Re FM1(w)|),

then |Re Fn(z)| > ϕ(|Re Fn(w)|) for all n > M1. Therefore z � w if

and only if there exists n0 ∈ N0 such that |Re Fn(z)| > |Re Fn(w)|

for all n > n0, and hence the speed ordering does not depend on the

choice of the function ϕ.

Lemma 3.64. Let s ∈ Σe, e ∈ {0,∞}N0 , be an external address that satisfies

the head-start condition for a function ϕ. Then the order topology induced

by the speed ordering � on Ĵs(F) coincides with its topology as a subset of Ĉ

and, in particular, every connected component of Ĵs(F) is an arc.

Moreover, there exists K ′ > 0 independent of s such that JK
′
s (F) is either

empty or contained in the unique unbounded component of Js(F), which

is an arc to the essential singularity e0 all of whose points escape except

possibly its finite endpoint.

Proof. The first part follows from the fact that the identity map

id : Ĵs(F) → (Ĵs(F),≺) is a homeomorphism (see [RRRS11, Theo-

rem 4.4]). Indeed, for all a ∈ Js(F), the sets

(a,+∞)≺ := {z ∈ Ĵs(F) : a ≺ z}, (−∞,a)≺ := {z ∈ Ĵs(F) : z ≺ a},
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are open sets in Ĵs(F) with the subspace topology of Ĉ: let k ∈N0 be

minimal with the property that |Re Fk(a)| > ϕ(|Re Fk(z)|) then, by

continuity, this inequality holds in a neighbourhood of z. Since Ĵs(F)

with the order topology is Hausdorff, the map id−1 is continuous as

well. The theorem follows from the order characterisation of the arc

(see [RRRS11, Theorem A5]).

For the second part, if K > K1(F), where K1(F) > 0 is the constant

from Proposition 3.51, and JKs (F) 6= ∅, then JKs (F) has an unbounded

componentAwhich is an arc to infinity. Since e0 is the largest element

of Ĵs(F) in the speed ordering, the set Ĵs(F) has only one unbounded

component. Using the head-start condition, it can be shown that if

z,w ∈ Js(F) and w � z then w ∈ Is(F) (see [RRRS11, Corollary 4.5]).

Finally, the fact that JK
′
s (F) ⊆ A for some K ′ > K follows from the

expansivity of F (see [RRRS11, Proposition 4.6]). �

As in the entire case, the following theorem can be deduced from

Lemma 3.64 (see [RRRS11, Theorem 4.2]).

Theorem 3.65. Let F ∈ B∗log satisfy a head-start condition. Then, for every

escaping point z, there exists k ∈N0 such that Fk(z) is on a ray tail γ. This

ray tail is the unique arc in J(F) connecting Fk(z) to either zero or infinity

(up to reparametrization).

Observe that Theorem 3.65 together with Proposition 3.60 imply

that if f is a transcendental self-map of C∗ and z ∈ I(f), then either z

is on a ray tail or there is some n 6 k such that fn(z) belongs to a ray

tail that contains an asymptotic value of f.

Previously we have seen that if f has finite order then any loga-

rithmic transforms F of f has good geometry in the sense of Defini-

tion 3.28. To complete the proof of Theorem 3.4 we show that func-

tions with good geometry satisfy a head-start condition.

Theorem 3.66. Let F ∈ B∗nlog be a function with good geometry. Then the

function F satisfies a linear head-start condition.

Proof. Let s ∈ Σ be an external address and suppose that F has

bounded slope with constants (α,β). Then the orbits of any two

points z,w ∈ Js(F) eventually separate far enough one from the other.
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More precisely, if K > 1, there exist a constant δ = δ(α,β,K) > 0 such

that if |z−w| > δ, then either

|Re Fn(z)| > K|Re Fn(w)|+ |z−w|

or the same condition, exchanging the roles of z and w, holds for

all n > 1 (see [RRRS11, Lemma 5.2]). Hence the external address s

satisfies the second part of the head-start condition with the linear

function ϕ(x) = Kx+ δ.

It remains to check that if s = (Tn), then for all k ∈ N0 and for all

z,w ∈ Tk such that F(z), F(w) ∈ Tk+1, we have

|Re w| > K|Re z|+ δ ⇒ |Re F(w)| > K|Re F(z)|+ δ.

We omit the technical computations from this proof, which are iden-

tical to the ones for the entire case, and just observe that this follows

from the fact that the tracts of F have uniformly bounded wiggling

with constants K and µ for some µ > 0 if and only if the conditions

|Re w| > K|Re z|+M ′

| Im F(z) − Im F(w)| 6 αmax{|Re F(z)|, |Re F(w)|}+β

imply that |Re F(w)| > K|Re F(z)|+M ′ whenever z,w ∈ T , for some

M ′ > 0. Hence F satisfies the uniform linear head-start condition with

constants K and M for some M > 0 (see [RRRS11, Proposition 5.4]).

�

Finally we prove Theorem 3.4 concerning the existence of dynamic

rays for compositions of finite order transcendental self-maps of C∗.

Proof of Theorem 3.4. Let f1, . . . , fn be finite order transcendental self-

maps of C∗ for some n > 1. By Theorem 3.3, the functions fi are in the

class B∗. Composing the functions fi with affine changes of variable,

we can assume that each fi has a normalised logarithmic transform

Fi : Ti →H±Ri ∈ B∗nlog for some Ri > 0.

By Proposition 3.36, each Fi has good geometry and hence, by Theo-

rem 3.66, they all satisfy linear head-start conditions. Just as for func-

tions in Blog, linear head-start conditions are preserved by compo-

sition in B∗log (see [RRRS11, Lemma 5.7]). If F1 has bounded slope
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and all Fi satisfy uniform linear head-start conditions, then the func-

tion F := Fn ◦ · · · ◦ F1 ∈ B∗log, which is a logarithmic transform of

f = fn ◦ · · · ◦ f1 ∈ B∗, has bounded slope and satisfies a uniform

linear head-start condition when restricted to a suitable set of tracts.

Finally, we can apply Theorem 3.65 and Proposition 3.60 to con-

clude that every point z ∈ I(f) is on a ray tail that joins z to either

zero or infinity. �

Remark 3.67. The proof of Theorem 3.4 relies on normalised logarith-

mic transforms. However, it is possible to carry out the same ideas

using only disjoint-type functions, so that the resulting function F is

also of disjoint type (see [RRRS11, Theorem 5.10] and [Bar07, Theo-

rem C]).

3.9 periodic rays and cantor bouquets

In Section 3.6 we observed that the set Js(F) may be empty for some

s ∈ Σ. For transcendental entire functions in the exponential fam-

ily, fλ(z) = λez, λ 6= 0, there is a characterization of which external

addresses give rise to hairs, and this led to the notion of exponen-

tially bounded (or admissible) external addresses in that context (see

[SZ03a]). In particular, every periodic external address is exponen-

tially bounded. Observe that the term admissible has a different mean-

ing in this context.

Barański, Jarque and Rempe [BJR12] studied the set of dynamic

rays for the functions considered in [RRRS11] and [Bar07], and showed

that they have uncountably many rays organised in a Cantor bouquet

(see Definition 3.68). In this section we adapt their techniques to study

the set of dynamic rays constructed in Section 3.8.

We begin by proving Theorem 3.7, which states that if f ∈ B∗ satis-

fies the hypothesis of Theorem 3.4 and t = (Dn) is an admissible ex-

ternal address of fwhich contains finitely many symbols, then f has a

unique (non-empty) dynamic ray with that external address. Further-

more, if (Dn) is periodic and the postsingular set P(f) is bounded,

then the dynamic ray lands.

Proof of Theorem 3.7. By Proposition 3.53, there exists an unbounded

continuum A ⊆ V of escaping points with external address t = (Dn).
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Let F be a periodic logarithmic transform of f, and let s = (Tn) be the

external address that corresponds to the sequence of fundamental

domains (Dn) of f by Lemma 3.48. By Theorem 3.4, the set Js(F) is

a dynamic ray γ̃, and the projection γ = exp γ̃ is a dynamic ray of f

with external address t = (Dn). Finally, by Lemma 3.58, since P(f) is

bounded, all periodic rays land. �

Theorem 3.7 implies, for example, that each fundamental domainD

of f contains exactly one invariant ray because the constant external

address t = (Dn) with Dn = D for all n ∈N0 is unique.

In Lemma 3.49, which summarized some results from Chapter 2,

we saw that if f is any transcendental self-map of C∗ and e ∈ {0,∞}N0 ,

then the set I0,0
e (f) contains an unbounded closed connected sub-

set Ae. Furthermore, if f ∈ B∗ and satisfies the hypothesis of The-

orem 3.4, then Theorem 3.7 implies that the set I0,0
e (f) contains a ray

tail; note that a dynamic ray may intersect the unit circle and hence

contain points that are not in I0,0
e (f). Therefore, in this case, since

the set {0,∞}N0 has uncountably many non-equivalent sequences e

and two such sequences give disjoint sets Ie(f), the escaping set I(f)

contains uncountably many rays.

As stated in the introduction, a stronger result is true, namely The-

orem 3.8, which states that for every essential itinerary e ∈ {0,∞}N0 ,

the set I0,0
e (f) contains a Cantor bouquet and, in particular, uncount-

ably many hairs. With the goal in mind of proving this theorem, we

start by giving a precise definition of a Cantor bouquet (see [AO93,

Definition 1.2]).

Definition 3.68 (Cantor bouquet). A set B ⊆ [0,+∞) × (R \ Q) is

called a straight brush if the following properties are satisfied:

(a) The set B is a closed subset of R2.

(b) For every point (x,y) ∈ B, there exists a value ty > 0 such that

{x : (x,y) ∈ B} = [ty,+∞).

(c) The set {y : (x,y) ∈ B for some x} is dense in R \ Q. Moreover,

for every (x,y) ∈ B, there exist two sequences of hairs attached

respectively at βn,γn ∈ R \ Q such that βn < y < γn for all

n ∈N, and βn,γn → y and tβn , tγn → ty as n→∞.
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The set [ty,+∞) × {y} is called the hair attached at y and the point

(ty,y) is called its endpoint. A Cantor bouquet is a set X ⊆ C that is the

image of a straight brush under a homeomorphism of C or C∗.

First we are going to show that, for each sequence e ∈ {0,∞}N0 ,

the set J(F) contains an absorbing set Xe consisting of hairs such that

every point in the set Ie(F) enters Xe after finitely many iterations

(see [RRRS11, Theorem 4.7]). Recall that, for e ∈ {0,∞}N0 , we defined

the set

Je(F) := {z ∈ J(F) : addrF(z) ∈ Σe} =
⋃

s∈Σe

Js(F).

It will be helpful to use the following notation: for each e ∈ {0,∞}N0 ,

we define the set of sequences

Σ+
e :=

⋃

n∈N

σn
(
Σe
)

and the set

J+e (F) := {z ∈ J(F) : addrF(z) ∈ Σ+
e } =

⋃

n∈N

Jσn(e)(F),

which is forward invariant.

Proposition 3.69. Suppose that F ∈ B∗log satisfies a head-start condition.

Then, for every e ∈ {0,∞}N0 , there exists a closed subset Xe ⊆ J+e (F) with

the following properties:

(a) F(Xe) ⊆ Xe.

(b) The connected components of Xe are closed arcs to infinity all of whose

points except possibly its endpoint escape.

(c) Every point in Ie(F) enters the set Xe after finitely many iterations.

If the function F is of disjoint type, then we may choose Xe = J+e (F) and

if F is 2πi-periodic, then Xe can also be chosen to be 2πi-periodic.

Proof. Let X ′e be the union of all unbounded components of the set

Je(F), and define the set

Xe :=
⋃

n∈N

X ′σn(e).
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Since unbounded components of J(F) map to unbounded components

of J(F) by F, we have F(X ′e) ⊆ X ′σ(e) and hence Xe is forward invariant.

By Lemma 3.50, the closure X̂e in Ĉ is the connected component of

J+e (F)∪ {∞} that contains infinity and hence the set Xe is closed. By

Lemma 3.64, the set Xe consists of arcs to infinity all of whose points

except possibly its endpoint escape.

Let K ′ > 0 be the constant from Lemma 3.64, independent of s ∈ Σ,

so that JK
′
s (F) is either empty or contained in the unbounded compo-

nent of Js(F), which is contained in Xe if s ∈ Σ+
e . Then (c) follows

from the fact that points in Ie(F) enter a set JK
′

σn(e)(F) ⊆ Xe, n ∈ N,

after finitely many iterations.

Finally, recall from Definition 3.18 that functions in the class B∗log

are of the form F : T → H0 ∪H∞, where the sets H0 and H∞ contain,

respectively, a left and a right half-plane. If F is of disjoint type, then

Je(F)∪ {∞} =
⋃

s∈Σe

⋂

n∈N

(
F−1
|T0

(
· · · F−1

|Tn−2

(
F−1
|Tn−1

(Hen)
)
· · ·
)
∪ {∞}

)
,

which is a union of nested intersections of unbounded continua, hence

every component of Je(F) is an unbounded continuum and we can

choose Xe = Je(F). If F is a 2πi-periodic function, then the set X ′e is

also 2πi-periodic. �

Following [BJR12], the strategy to prove Theorem 3.8 will be, for

each essential itinerary e ∈ {0,∞}N0 , to compactify the space of ad-

missible external addresses Σe by adding a circle of addresses at infinity

to show that the set X ′e (and hence Xe) contains a Cantor bouquet.

Lemma 3.70. For every e ∈ {0,∞}N0 , there exists a totally ordered set

S̃e ⊇ Σe, where the order on S̃e agrees with the lexicographic order on Σe,

such that

(a) with the order topology, the set S̃e is homeomorphic to R∪ {−∞,+∞};

(b) the set Σe is dense in S̃e.

The construction of S̃e is achieved by defining intermediate entries of

each set Te1e0 with e0, e1 ∈ {0,∞}, that is, symbols which correspond

to entries in between pairs of adjacent tracts as well as to limits of

sequences of tracts. We then add intermediate external addresses to the

set Σe, that is, finite sequences of the form s = T0T1 . . . Tn−1Sn, where
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Tj ∈ T
ej+1
ej , 0 6 j < n, and Sn is an intermediate entry of the set Ten+1en .

We refer to [BJR12, Section 5] for the details.

We can then define a topology on the set H̃e := He0 ∪ S̃e that agrees

with the induced topology on H and such that H̃e is homeomorphic

to the closed unit disc. Then, in this topology, the closure X̃e of the

set Xe from Proposition 3.69 is a comb, a compactification of a straight

brush, with the arc S̃e as base.

Definition 3.71 (Comb). A comb is a continuum X containing an arc B,

called the base of the comb, such that

(a) the closure of every component of X \ B is an arc with exactly

one endpoint in the base B;

(b) the intersection of the closures of any two hairs is empty;

(c) the set X \B is dense in X.

The fact that a Cantor bouquet consists of uncountably many hairs

comes from the fact that a perfect set is uncountable. We introduce

now the concept of (one-sided) hairy arc, a comb where every hair is

accumulated by other hairs.

Definition 3.72 (Hairy arc). A hairy arc is a comb with base B and an

order ≺ on B such that if b ∈ B and x belongs to the hair attached

at b, then there exist sequences (x+n) and (x−n), attached respectively

at points b+n ,b−n ∈ B, such that b−n ≺ b ≺ b+n and x−n , x+n → x as

n → ∞. A one-sided hairy arc is a hairy arc with all its hairs attached

to the same side of the base.

Given a straight brush, it is easy to see that we can add a base

to obtain a hairy arc. Aarts and Oversteegen showed that one-sided

hairy arcs (and, in particular, straight brushes) are all ambiently homeo-

morphic to each other, that is, they can be mapped to each other by a

homeomorphism of C, and hence the converse of the previous state-

ment is also true [AO93, Theorem 4.1].

Lemma 3.73. Let X be a one-sided hairy arc with base B. Then there is a

homeomorphism of C that maps X \B to a straight brush.

In order to show that Xe contains a Cantor bouquet, we prove that

every hair in X ′e is accumulated by hairs of the same set from both

sides. To do so, we adapt the proof of [BJR12, Proposition 7.3].
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Proposition 3.74. Let F : T → H be a 2πi-periodic function in the class

B∗log, and let e ∈ {0,∞}N0 and τ > 0. Then there exists τ ′ > τ such

that for every z0 ∈ Jτ
′
e (F), there exist sequences (z−n), (z+n) ⊆ Jτe(F) with

addresses addr(z−n) < addr(z0) < addr(z+n) for all n ∈N and z−n , z+n → z0

as n→∞.

Proof. Let R0 be the constant from Lemma 3.21 so that H±R ⊆ H and

|F ′(z)| > 2 for |Re z| > R0. Let n ∈ N, and let ϕn : Hen → He0 be the

branch of F−n that maps Fn(z0) to z0. Set τ ′ := max{R, τ}+ π and, for

n ∈N, define

z±n := ϕn
(
Fn(z0)± 2πi

)
∈ Jτe(F).

Then addr(z−n) < addr(z0) < addr(z+n) for all n. Finally, since F is

expanding with respect to the Euclidean metric on H±R , the maps ϕn
are contractions and z±n → z0 as n→∞. �

Note that given any logarithmic transform F of a function f ∈ B∗

we can modify it to obtain a periodic logarithmic transform F̂ of f by

adding a suitable multiple of 2πi to F on each of its tracts.

Finally we sketch the proof of Theorem 3.8. The main idea is to use

the existence of a potential function ρ that ‘straightens’ the brush X ′e
(see [BJR12, Proposition 7.1]).

Proof of Theorem 3.8. Let F ∈ B∗log be 2πi-periodic and satisfy a uni-

form head-start condition and let X ′e denote the union of the un-

bounded components of Je(F) as in Proposition 3.69. For each se-

quence e ∈ {0,∞}N0 , consider the set

Ze := {z ∈ X ′e : ρ
(
Fj(z)

)
> K for all j ∈N0}∪ S̃e,

where ρ is a 2πi-periodic continuous function that is strictly increasing

on the hairs and such that ρ(zn)→+∞ if and only if |Re zn|→+∞.

Then, there exists R > 0 sufficiently large so that

JRe (F) ⊆ Ze ⊆ X̃e

and hence Ze is a comb. Then Proposition 3.74 together with the

fact that F satisfies a uniform head-start condition imply that Ze is

a hairy arc and, by Lemma 3.73, there is a homeomorphism from

Ĉ \ {e0} to C that maps Ze \ S̃e to a straight brush. We can choose

the set Xe from Proposition 3.69 to be 2πi-periodic and so both Je(F)
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and exp(Je(F)) contain an absorbing Cantor bouquet. Note that all

the points in exp(Je(F)) belong to I0,0
e (f) except, possibly, the finite

endpoints of the hairs.

Finally, if F is of disjoint type, then the closure of Je(F) in H̃e is a

one-sided hairy arc, and hence both Je(F) and exp(Je(F)) are Cantor

bouquets. �





4
E S C A P I N G FAT O U C O M P O N E N T S

In this chapter we use approximation theory to construct examples

of transcendental self-maps of C∗ with escaping wandering domains

and Baker domains that accumulate at {0,∞} in any possible way and

also give the first explicit examples, in closed form, of transcendental

self-maps of C∗ that have escaping Fatou components. Our results

provide completely new examples of transcendental entire functions

with escaping Fatou components.

4.1 introduction and main results

Here we are concerned with escaping points in the Fatou set. By nor-

mality, if a Fatou component U contains a point in I(f), then U ⊆ I(f).
Moreover, any two points in an escaping Fatou component U have,

eventually, the same essential itinerary and hence we can associate

an essential itinerary to U which is unique up to equivalence. If f is a

transcendental self-map of C∗, we have proved that Ie(f)∩ J(f) 6= ∅ for

each sequence e ∈ {0,∞}N0 (see Theorem 2.4). Therefore it is a natural

question whether for each e ∈ {0,∞}N0 we can find a transcendental

self-map of C∗ with a Fatou component in Ie(f).

In the Introduction, we mentioned that several people used approx-

imation theory to provide examples of transcendental self-maps of C∗

with escaping wandering domains. However, in our notation, all the

previous examples had essential itinerary e ∈ {∞, 0,∞0}. The follow-

ing result provides examples of transcendental self-maps of C∗ that

have an escaping wandering domain with any prescribed essential

itinerary e ∈ {0,∞}N0 . In particular, we obtain wandering domains

whose essential itinerary is not periodic.

Theorem 4.1. For each sequence e ∈ {0,∞}N0 and n ∈ Z, there exists a

transcendental self-map f of C∗ such that ind(f) = n and Ie(f) contains a

wandering domain.

101
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A result of Cowen [Cow81] on holomorphic self-maps of D whose

Denjoy-Wolff point lies on ∂D led to the following classification of

Baker domains by Fagella and Henriksen [FH06], where U/f is the

Riemann surface obtained by identifying points of U that belong to

the same orbit under f:

• a Baker domain U is hyperbolic if U/f is conformally equivalent

to {z ∈ C : −s < Im z < s}/Z for some s > 0;

• a Baker domain U is simply parabolic if U/f is conformally equi-

valent to {z ∈ C : Im z > 0}/Z;

• a Baker domain U is doubly parabolic if U/f is conformally equi-

valent to C/Z.

Note that this classification does not require f to be entire and is

valid also for Baker domains of transcendental self-maps of C∗. König

[Kön99] provided a geometric characterisation for each of these types

(see Lemma 4.11). It is known that if U is a doubly parabolic Baker

domain, then f|U is not univalent, but if U is a hyperbolic or sim-

ply parabolic Baker domain, then f|U can be either univalent or mul-

tivalent. Several examples of each type had been constructed, and

recently Bergweiler and Zheng completed the table of examples by

constructing a transcendental entire function with a simply parabolic

Baker domain in which the function is not univalent [BZ12, Theo-

rem 1.1].

The only previous examples of Baker domains of transcendental

self-maps of C∗ that the author is aware of are due to Kotus [Kot90],

where she used approximation theory to construct two functions with

invariant hyperbolic Baker domains escaping to zero and to infin-

ity respectively. The following theorem provides examples of func-

tions with Baker domains that have any periodic essential itinerary

e ∈ {0,∞}N0 .

Theorem 4.2. For each periodic sequence e ∈ {0,∞}N0 and n ∈ Z, there

exists a transcendental self-map f of C∗ such that ind(f) = n and Ie(f)

contains a hyperbolic Baker domain.

We also give the first explicit examples of transcendental self-maps

of C∗ with wandering domains and Baker domains. They all have the

property that in a neighbourhood of infinity they behave like known
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examples of transcendental entire functions with wandering domains

and Baker domains; see Section 2 for the details.

Example 4.3. The following transcendental self-maps of C∗ have es-

caping Fatou components:

(i) The function f(z) = z exp
( sinz
z + 2π

z

)
has a bounded wandering

domain in which points escape to infinity (see Example 4.4).

(ii) The function f(z) = 2z exp
(
exp(−z) + 1/z

)
has a hyperbolic

Baker domain in which points escape to infinity that contains a

right half-plane (see Example 4.12).

(iii) The function f(z) = z exp ((e−z + 1)/z) has a doubly parabolic

Baker domain in which points escape to infinity that contains a

right half-plane (see Example 4.13).

It seems hard to find explicit examples of functions with Baker

domains and wandering domains with any given essential itinerary,

but it would be interesting to have an explicit example of a function

with an escaping Fatou component that accumulates to both zero and

infinity. It also seems difficult to find explicit examples of functions

with simply parabolic Baker domains.

If f is a transcendental self-map of C∗ with a wandering domain,

then any lift f̃ of f has a wandering domain, while if f has a Baker

domain, then f̃ has either a Baker domain (of the same type) or a

wandering domain (see Lemmas 4.7 and 4.14).

Finally, observe that our constructions using approximation theory

also provide new examples of transcendental entire functions with no

zeros in C∗ that have wandering domains and Baker domains.

Structure of the chapter. In Sections 4.2 and 4.3 we prove that the

functions from Example 4.3 have the escaping Fatou components that

we state. In Section 4.4 we introduce the tools from approximation

theory that we will use in the proof of Theorem 4.1 in Section 4.5,

and Theorem 4.2 in Section 4.6, to construct transcendental self-maps

of C∗ with escaping wandering domains and Baker domains, respec-

tively. In Section 4.6 we also construct transcendental entire and mero-

morphic functions that are self-maps of C∗ and have Baker domains.
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4.2 explicit functions with wandering domains

As mentioned before, the author is not aware of any previous explicit

examples of transcendental self-maps of C∗ with wandering domains

or Baker domains as all such functions were constructed using ap-

proximation theory.

Kotus [Kot90] showed that transcendental self-maps of C∗ can have

escaping wandering domains by constructing examples of such func-

tions using approximation theory. Here we give an explicit example

of such a function by modifying a transcendental entire function that

has a wandering domain.

Example 4.4. The function f(z) = z exp
( sinz
z + 2π

z

)
is a transcendental

self-map of C∗ which has a bounded wandering domain that escapes

to infinity (see Figure 10).

Figure 10: Phase space of the function f(z) = z exp
( sinz
z + 2π

z

)
from Exam-

ple 4.4 which has a wandering domain. On the right, the wander-
ing domain for large values of Re z.

Baker [Bak84, Example 5.3] (see also [RS08, Example 2]) studied the

dynamics of the transcendental entire function f1(z) = z+ sin z+ 2π

that has a wandering domain containing the point z = π that escapes

to infinity. Observe that the function f from Example 4.4 satisfies that

f(z) = z+ sin z+ 2π+ o(1) as Re z→ +∞ (4.1)

in a horizontal band defined by |Im z| < K for some K > 0.

We first prove a general result which gives a sufficient condition

that implies that a function has a bounded wandering domain (see
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Figure 11) using some of the ideas from [RS08, Lemma 7(c)]. Given

a doubly connected open set A, we define the inner boundary, ∂inA,

and the outer boundary, ∂outA, ofA to be the boundary of the bounded

and unbounded complementary components of A respectively.

Lemma 4.5. Let f be a function that is holomorphic on C∗, let M be an

affine map, let A be a doubly connected closed set in C∗ with bounded com-

plementary component B, and let C ⊆ B be compact. Put

An :=Mn(A), Bn :=Mn(B) and Cn :=Mn(C) for n ∈N0,

and suppose that

• An ∪Bn ⊆ C∗ for n ∈N0,

• the sets {Bn}n∈N0
are pairwise disjoint,

• f(∂inAn) ⊆ Cn+1 for n ∈N0,

• f(∂outAn) ⊆ (An+1 ∪Bn+1)c for n ∈N0.

Then f has wandering domains {Un}n∈N0
such that

∂inAn ⊆ Un and ∂Un ⊆ An for n ∈N0.

f

f
f

f

MM

A0 A1 A2

C0 C1 C2

B0 B1 B2

Figure 11: Sketch of the construction in Lemma 4.5.

In order to prove this lemma, we first need the following result on

limit functions of holomorphic iterated function systems by Keen and

Lakic [KL03, Theorem 1].
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Lemma 4.6. Let X be a subdomain of the unit disc D. Then all limit func-

tions of any sequence of functions (Fn) of the form

Fn := fn ◦ fn−1 ◦ · · · ◦ f2 ◦ f1 for n ∈N,

where fn : D → X is a holomorphic function for all n ∈ N, are constant

functions in X if and only if X 6= D.

We now proceed to prove Lemma 4.5.

Proof of Lemma 4.5. Since f(Bn) ⊆ Cn+1 ⊆ Bn+1, the iterates of f on

each set Bn omit more than three points and hence, by Montel’s the-

orem, the sets {Bn}n∈N0
are all contained in F(f). For n ∈N0, let Un

denote the Fatou component of f that contains Bn. We now show that

the functions

Φk(z) :=M
−k(fk(z)) for k ∈N0,

form a normal family in Un for all n ∈N0.

Suppose first that the Fatou components {Un}n∈N0
are not distinct.

Then there are two sets Bm and Bm+p with m ∈ N0 and p > 0

which lie in the same Fatou components Um = Um+p. Then, since

fp(Bm) ⊆ Bm+p and Bn → ∞ as n → ∞, Um must be periodic and

in I(f), and hence a Baker domain.

Let zm ∈ Bm and let K be any compact connected subset of Um
such that K ⊇ Bm. Then by Baker’s distortion lemma (see Lemma 2.22),

there exist constants C(K) > 1 and n0 ∈N0 such that

|fk(z)| 6 C(K)|fk(zm)| for z ∈ K, k > n0.

Since M, and hence M−k, is an affine transformation, M−k preserves

the ratios of distances, so

|Φk(z)| = |M−k(fk(z))| 6 C(K)|M−k(fk(zm))| = C(K)|z ′m|

where z ′m ∈ Bm satisfiesMk(z ′m) = fk(zm). Hence the family {Φk}k∈N0

is locally uniformly bounded on Um, and hence is normal on Um.

Suppose next that the Fatou components {Un}n∈N0
are disjoint. In

this case we consider the sequence of functions

ϕk(z) :=M
−(k+1)(f(Mk(z))) for k ∈N0,
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which are defined on Un, for n ∈N0. Then

Φk(z) = (ϕk−1 ◦ · · · ◦ϕ1 ◦ϕ0)(z) =M−k(fk(z)) for k ∈N0. (4.2)

Since the Fatou components {Un}n∈N0
are pairwise disjoint and

fk(Un) ⊆ Un+k,

we deduce that

fk(Un)∩Bn+k+1 = ∅

and hence

Φk(Un)∩Bn+1 = ∅ for k,n ∈N0.

Thus {Φk}k∈N0
is normal on each Un, by Montel’s theorem, as re-

quired.

Now take n ∈N0, and let {Φkj}j∈N0
be a locally uniformly conver-

gent subsequence of {Φk}k∈N0
on Bn. Note that

Mk(Bn) = Bn+k so f(Mk(Bn)) ⊆ Cn+k+1

and hence, for k ∈N0,

ϕk(Bn) =M
−(k+1)(f(Mk(Bn))) ⊆M−(k+1)(Cn+k+1) = Cn.

We can now apply Lemma 4.6, after a Riemann mapping from Bn to

the open unit disc D, to deduce from (4.2) that there exists αn ∈ Bn
such that, for all z ∈ Un,

Φkj(z)→ αn as j→∞.

To complete the proof that Un is bounded by ∂outAn for all n ∈N,

suppose to the contrary that there is a point z0 ∈ ∂outAn that lies in

Un for some n ∈ N. Let γ ⊆ Un be a curve that joins z0 to a point

z1 ∈ Bn. Since γ is compact, Φkj(γ)→ α as j→∞ which contradicts

the fact that fk(γ) ∩ ∂outAn+k 6= ∅ for all k ∈ N (this follows from

the hypothesis that f(∂outAn) ⊆ (An+1 ∪ Bn+1)c for n ∈ N0). Thus,

∂Un ⊆ An for all n ∈N, and so the proof is complete. �
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We now use Lemma 4.5 to show that the function f from Exam-

ple 4.4 has a bounded wandering domain that escapes to infinity

along the positive real axis.

Proof of Example 4.4. The entire function g(z) = z + sin z has super-

attracting fixed points at the odd multiples of π. For n ∈ N0, take

Bn := D((2n+ 1)π, r) and Cn := D((2n + 1)π, r/2) for some r > 0

sufficiently small that g(Bn) ⊆ Cn and put

Rn := {z ∈ C : |Re z− (2n+ 1)π| 6 3π/2, |Im z| 6 3}.

It follows from a straightforward computation that g(∂Rn) ⊆ Rcn for

all n ∈N0 (see Figure 12).

R0

g(R0)

•
π

Figure 12: Rectangle R0 and its image under g(z) = z+ sin z.

Then, by (4.1), there exists N ∈ N0 such that f(Bn) ⊆ Cn+1 and

f(∂Rn) ⊆ Rcn+1 for all n > N. Thus, we can apply Lemma 4.5 to f

with M(z) = z+ 2π and An := Rn \ Bn for n > N and conclude that

the function f has wandering domains Un that contain Bn and whose

boundary is contained in Rn. �

The next lemma relates the wandering domains of a transcendental

self-map of C∗ and a lift of it.

Lemma 4.7. Let f be a transcendental self-map of C∗ and let f̃ be a lift of f.

Then, if U is a wandering domain of f, every component of exp−1(U) is a

wandering domain of f̃ which must be simply connected.
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Proof. By a result of Bergweiler [Ber95], every component of exp−1(U)

is a Fatou component of f̃. Let U0 be a component of exp−1(U) and

suppose to the contrary that there exist m,n ∈ N0, m 6= n, and a

point z0 ∈ f̃m(U0) ∩ f̃n(U0). Then, there exists points z1, z2 ∈ U0
such that

fm(ez1) = exp f̃m(z1) = exp z0 = exp f̃n(z2) = fn(ez2).

Since ez1 , ez2 ∈ U, this contradicts the assumption that U is a wander-

ing domain of f. Hence U0 is a wandering domain of f̃.

Finally, by [Bak87, Theorem 1], the Fatou component U is either

simply connected or doubly connected and surrounds the origin. Since

the exponential function is periodic, taking a suitable branch of the

logarithm one can show that the components of exp−1(U) are simply

connected. �

Remark 4.8. Observe that the converse of Lemma 4.7 does not hold. If

f is a transcendental self-map of C∗ with an attracting fixed point z0
and A is the immediate basin of attraction of z0, then there is a lift f̃

of f such that a component of exp−1(A) is a wandering domain.

If a transcendental self-map of C∗ has an escaping wandering do-

main, then we can use the previous lemma to obtain automatically

an example of a transcendental entire function with an escaping wan-

dering domain.

Example 4.9. The transcendental entire function f̃(z) = z+ sinez
ez + 2π

ez ,

which is a lift of the function f from Example 4.4, has infinitely many

grand orbits of bounded wandering domains that escape to infinity.

4.3 explicit functions with baker domains

We now turn our attention to Baker domains. As we mentioned in the

introduction, Baker domains can be classified into hyperbolic, simply

parabolic and doubly parabolic according to the Riemann surface U/f

obtained by identifying the points of the Baker domain U that belong

to the same orbit under iteration by the function f. König [Kön99]

introduced the following notation.

Definition 4.10 (Conformal conjugacy). Let U ⊆ C be a domain and

let f : U→ U be analytic. Then a domain V ⊆ U is absorbing (or funda-
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mental) for f if V is simply connected, f(V) ⊆ V and for each com-

pact set K ⊆ U, there exists N = NK such that fN(K) ⊆ V . Let

H := {z ∈ C : Re z > 0}. The triple (V ,φ, T) is called a conformal

conjugacy (or eventual conjugacy) of f in U if

(a) V is absorbing for f;

(b) φ : U→ Ω ∈ {H, C} is analytic and univalent in V ;

(c) T : Ω→ Ω is a bijection and φ(V) is absorbing for T ;

(d) φ(f(z)) = T(φ(z)) for z ∈ U.

In this situation we write f ∼ T .

Observe that properties (b) and (d) imply that f is univalent in

V . König also provided the following geometrical characterization of

the three types of Baker domains [Kön99, Theorem 3]. This charac-

terisation is also valid for any simply connected Baker domain of a

transcendental self-map of C∗.

Lemma 4.11. Let U be a p-periodic Baker domain of a meromorphic func-

tion f in which fnp → ∞ and on which fp has a conformal conjugacy. For

z0 ∈ U, put

cn = cn(z0) :=
|f(n+1)p(z0) − f

np(z0)|

dist(fnp(z0),∂U)
.

Then exactly one of the following cases holds:

(a) U is hyperbolic and fp ∼ T1(z) := λzwith λ > 1, which is equivalent to

cn > c for z0 ∈ U, n ∈N, where c = c(f) > 0.

(b) U is simply parabolic and fp ∼ T2(z) := z± i, which is equivalent to

lim inf
n→∞ cn > 0 for z0 ∈ U, but inf

z0∈U
lim sup
n→∞ cn = 0;

(c) U is doubly parabolic and fp ∼ T3(z) := z+ 1, which is equivalent to

lim
n→∞ cn = 0 for z0 ∈ U.
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z+ 1

C

z+ i

HH

λz

(a) U hyperbolic (b) Usimplyparabolic (c) Udoublyparabolic

Figure 13: Classification of Baker domains with their absorbing domains.

We now give a couple of explicit examples of transcendental self-

maps of C∗, with a hyperbolic and a doubly parabolic Baker domain,

respectively.

Example 4.12. For every λ > 1, the function fλ(z) = λz exp(e−z+ 1/z)

is a transcendental self-map of C∗ which has an invariant, simply

connected, hyperbolic Baker domain U ⊆ C∗ \ R− whose boundary

contains both zero and infinity, and the points in U escape to infinity

(see Figure 14).

Proof of Example 4.12. First observe that

fλ(z) = λz exp
(
e−z + 1

z

)

= λz
(
1+ e−z + 1

2!e
−2z + · · ·

) (
1+ 1

z +
1
2!
1
z2

+ · · ·
)

= λz
(
1+O

(
1
z

))
as Re z→∞.

(4.3)

Hence fλ maps HR := {z ∈ C : Re z > R} into itself, for R > 0 suffi-

ciently large, so HR ⊆ U, where U is an invariant Fatou component

of fλ. Also, for real x > 0,

fλ(x) = λx exp
(
e−x + 1

x

)
> λx > x

so fnλ (x)→∞ as n→∞. Hence, U is an invariant Baker domain of f

which contains (0,+∞), so its boundary contains zero and infinity.
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To show that U is a hyperbolic Baker domain, consider z0 ∈ U. By

the contraction property of the hyperbolic metric in U, the orbit of z0
escapes to infinity in HR. Hence, by (4.3) and since 0 ∈ Uc,

cn =
|fn+1(z0) − f

n(z0)|

dist (fn(z0),∂U)
>
λfn(z0)

(
1+O

(
1

fn(z0)

))
− fn(z0)

|fn(z0)|

> λ− 1−
O(1)

|fn(z0)|
as n→∞,

so

lim inf
n→∞ cn > λ− 1 > 0,

and hence U is hyperbolic.

Finally, observe that the negative real axis is invariant under f, so

(−∞, 0)∩U = ∅ and hence U is simply connected. �

Figure 14: Phase space of the function f2(z) = 2z exp(e−z+ 1/z) from Exam-
ple 4.12. On the right, zoom of a neighbourhood of zero.

The function f(z) = 2z exp(e−z + 1/z) has a repelling fixed point in

the negative real line. If we choose h(z) = 1/z2 instead of 1/z, then

f(z) = 2z exp(e−z+ 1/z2) has the positive real axis in a Baker domain

while the negative real axis is in the fast escaping set.

We now give a second explicit example of transcendental self-map

of C∗ with a Baker domain which, in this case, is doubly parabolic.

Example 4.13. The function f(z) = z exp ((e−z + 1)/z) is a transcen-

dental self-map of C∗ which has an invariant, simply connected, dou-

bly parabolic Baker domain U ⊆ C∗ \ R− whose boundary contains

both zero and infinity, and the points in U escape to infinity (see Fig-

ure 15).
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Proof of Example 4.13. Looking at the power series expansion of f, we

have

f(z) = z exp
(
e−z

z + 1
z

)

= z
(
1+ e−z

z + 1
2!
e−2z

z2
+ · · ·

) (
1+ 1

z +
1
2!
1
z2

+ · · ·
)

= z
(
1+ 1

z +O
(
1
z2

))
as Re z→∞.

Therefore f maps the right half-plane HR := {z ∈ C : Re z > R} into

itself for sufficiently large values of R > 0 and HR is contained in an

invariant Baker domain U of f, in which Re fn(z) → +∞ as n → ∞.

Since f(x) > x for all x > 0, the positive real axis lies in U. Let z0 ∈ U,

then

fn+1(z0)− f
n(z0)=f

n(z0)

(
1+O

(
1

fn(z0)

))
− fn(z0)=O(1) as n→∞

and, if R is as above,

dist(fn(z0),∂U) > Re fn(z0) − R as n→∞,

so

cn =
|fn+1(z0) − f

n(z0)|

dist(fn(z0),∂U)
6

O(1)

Re fn(z0) − R
→ 0 as n→∞.

Thus, by Lemma 4.11, the Baker domain U is doubly parabolic.

Finally, observe that, for x ∈ (−∞, 0), fn(x) → ∞ along the nega-

tive real axis as n → ∞, so (−∞, 0) ∩U = ∅ and hence U is simply

connected. �

Lemma 4.14. Let f be a transcendental self-map of C∗ and let f̃ be a lift

of f. Then, if U is a Baker domain of f, every component Uk, k ∈ Z, of

exp−1(U) is either a (preimage of a) Baker domain or a wandering domain

of f̃. Moreover, if U is simply connected and Uk is a Baker domain, then

Uk is hyperbolic, simply parabolic or doubly parabolic if and only if U is

hyperbolic, simply parabolic or doubly parabolic, respectively.

Proof. By [Ber95], every component of exp−1(U) is a Fatou compo-

nent of f̃. Moreover, since exp−1(I(f)) ⊆ I(f̃), Uk is either a Baker

domain, a preimage of a Baker domain or an escaping wandering

domain of f̃.
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Figure 15: Phase space of the function f(z) = z exp ((e−z + 1)/z) from Exam-
ple 4.13. On the right, zoom of a neighbourhood of zero.

Suppose that U has period p > 1 and Uk is periodic. Then the

Baker domain Uk has period qwith p | q. Let (V ,φ, T) be a conformal

conjugacy of fq in U. Then (Ṽ , φ̃, T) is a conformal conjugacy of f̃q

in Uk, where Ṽ is the component of exp−1 V that lies in Uk and

φ̃ = φ ◦ exp. Thus, the Baker domains U and Uk are of the same

type. �

As before, we use Lemma 4.14 to provide examples of transcenden-

tal entire functions with Baker domains and wandering domains.

Example 4.15. The entire function f̃(z)= ln λ+z+exp(−ez)+e−z, which

is a lift of the function f from Example 4.12, has an invariant hyper-

bolic Baker domain that contains the real line.

Example 4.16. The entire function f̃(z) = z+
exp(−ez)
ez + e−z, which

is a lift of the function f from Example 4.13, has an invariant doubly

parabolic Baker domain that contains the real line.

4.4 preliminaries on approximation theory

In this section we state the results from approximation theory that

will be used in Sections 4.5 and 4.6 to construct examples of functions

with wandering domains and Baker domains, respectively. We follow

the terminology from [Gai87, Chapter IV], and introduce Weierstrass

and Carleman sets. Recall that if F ⊆ C is a closed set, then A(F) de-
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notes the set of continuous functions f : F → C that are holomorphic

in the interior of F.

Definition 4.17 (Weierstrass set). We say that a closed set F ⊆ C is

a Weierstrass set in C if each f ∈ A(F) can be approximated by entire

functions uniformly on F; that is, for every ε > 0, there is an entire

function g for which

|f(z) − g(z)| < ε for all z ∈ F.

The next result is due to Arakelyan and provides a characterisation

of Weierstrass sets [Ara64]. In the case that F ⊆ C is compact and C \ F

is connected, then it follows from Mergelyan’s theorem [Gai87, Theo-

rem 1 on p. 97] that functions in A(F) can be uniformly approximated

on F by polynomials.

Lemma 4.18 (Arakelyan’s theorem). A closed set F ⊆ C is a Weierstrass

set if and only if the following two conditions are satisfied:

(K1) Ĉ \ F is connected;

(K2) Ĉ \ F is locally connected at infinity.

If in addition both the set F and the function f ∈ A(f) are symmetric

with respect to the real line, then the approximating function g can

be chosen to be symmetric as well (see [Gau13, Section 2]).

Sometimes we may want to approximate a function in A(f) so that

the error is bounded by a given strictly positive function ε : C→ R+

that is not constant, and ε(z) may tend to zero as z→∞.

Definition 4.19 (Carleman set). We say that a closed set F ⊆ C is

a Carleman set in C if every function f ∈ A(F) admits tangential ap-

proximation on F by entire functions; that is, for every strictly positive

function ε ∈ C(F), there is an entire function g for which

|f(z) − g(z)| < ε(z) for all z ∈ F.

It is clear that Carleman sets are a special case of Weierstrass sets

and hence conditions (K1) and (K2) are necessary. Nersesyan’s theo-

rem gives sufficient conditions for tangential approximation [Ner71].

Lemma 4.20 (Nersesyan’s theorem). A closed set F is a Carleman set in C

if and only if conditions (K1), (K2) and
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(A) for every compact set K ⊆ C there exists a neighbourhood V of infinity

in Ĉ such that no component of int F intersects both K and V ,

are satisfied.

Note that there is also a symmetric version of this result: if the set

F and the functions f and ε are in addition symmetric with respect

to R then the entire function g can be chosen to be symmetric with

respect to R [Gau13, Section 2].

In some cases, depending on the geometry of the set F and the de-

cay of the error function ε, we can perform tangential approximation

on Weierstrass sets without needing condition (A); the next result can

be found in [Gai87, Corollary in p.162].

Lemma 4.21. Suppose F ⊆ C is a closed set satisfying conditions (K1) and

(K2) that lies in a sector

Wα := {z ∈ C : |arg z| 6 α/2},

for some 0 < α 6 2π. Suppose ε̃(t) is a real function that is continuous and

positive for t > 0 and satisfies∫+∞
1

t−(π/α)−1 log ε̃(t)dt > −∞.

Then every function f ∈ A(F) admits ε-approximation on the set F with

ε(z) = ε̃(|z|) for z ∈ F.

4.5 construction of functions with wandering domains

To prove Theorem 4.1 we modify Baker’s construction of a holomor-

phic self-map of C∗ with a wandering domain escaping to infinity

[Bak87, Theorem 4] to create instead a transcendental self-map of C∗

with a wandering domain that accumulates to zero and to infinity

according to a prescribed essential itinerary e ∈ {0,∞}N0 and with

index n ∈ Z.

Proof of Theorem 4.1. We construct two entire functions g and h us-

ing Nersesyan’s theorem so that the function f(z) = zn exp
(
g(z) +

h(1/z)
)
, which is a transcendental self-map of C∗, has the following

properties:
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• there is a bi-infinite sequence of annuli sectors {Am}m∈Z\{0} that

accumulate at zero and infinity and integers s(m) ∈ Z \ {0}, for

m ∈ Z \ {0}, such that f(Am) ⊆ As(m) for all m ∈ Z;

• the discs B+ := D(2, 1/4) and B− := 1/B+ = D(32/63, 4/63)

both map strictly inside themselves under f, f(B+) ⊆ intB+

and f(B−) ⊆ intB−;

• there is a bi-infinite sequence of closed discs {Bm}m∈Z\{0} such

that f(Bm) ⊆ intB+, if m > 0, and f(Bm) ⊆ intB−, if m < 0.

Here s(m) := π(π−1(m) + 1) and the map π : N −→ Z \ {0} is an

ordering of the sets {Am}m∈N according to the sequence e; that is,

π(k) is the position of the kth component in the orbit of the wandering

domain. More formally, we define

π(k) :=


#{` ∈N0 : e` =∞ for ` < k}+ 1, if ek =∞,

− #{` ∈N0 : e` = 0 for ` < k}− 1, if ek = 0,
(4.4)

for k ∈N (see Figure 16).

... ...
B− B+ A1 A2 A3

A−1

A−2

B1 B2

B−1

|z| = 1

B−2

f

f

f

f

Figure 16: Sketch of the construction in the proof of Theorem 4.1.

By Montel’s theorem, the domains {Am}m∈Z\{0}, {Bm}m∈Z\{0} and

B+,B− are all contained in the Fatou set. Since f(B+) ⊆ intB+, the

function f has an attracting fixed point in B+ and the sets {Bm}m∈N

are contained in the preimages of the immediate basin of attraction
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of this fixed point. Likewise, the sets {B−m}m∈N belong to the basin

of attraction of an attracting fixed point in B−. Observe that in order

to show that A1 is contained in a wandering domain that escapes

following the essential itinerary e we need to prove that every Am is

contained in a different Fatou component.

Now let us construct the entire functions g and h so that the func-

tion f(z) = zn exp
(
g(z) + h(1/z)

)
has the properties stated above.

Note that in this construction log z denotes the principal branch of

the logarithm with −π < arg z < π. Let 0 < R < π/2 and set, for

m > 0, define

Am := {z ∈ C : −R 6 arg(z) 6 R, km 6 |z| 6 kme2R},

Bm := D
(
(km+1 − km)/2, 1/8

)
,

where km is any sequence of positive real numbers such that km> 5/2

and km+1 > km + 1/4 for all m ∈ N. We define A−m := 1/Am and

B−m := 1/Bm for all m ∈ N. Note that logAm is a square of side 2R

centred at a point that we denote by am ∈ R. Hence, logAm contains

the disc D(am,R) for all m ∈ Z \ {0}. The set

F := D(0, 1)∪B+ ∪
⋃

m>0

(Am ∪Bm)

which consists of a countable union of disjoint compact sets is a Car-

leman set.

Let δ+, δ− > 0 be such that |w− ln 2|< δ+ and |w− ln 32/63|<δ−
imply, respectively, that |ew − 2| < 1/8 and |ew − 32/63| < 2/63. Let

K := min{R/4, δ±/4}. By Lemma 4.20, there is an entire function g that

satisfies the following conditions:

|g(z) − as(m) −n log z| < R/4, if z ∈ Am with m > 0,

|g(z) − ln 2−n log z| < δ+/4, if z ∈
⋃

m>0

Bm ∪B+,

|g(z)| < K, if z ∈ D(0, 1),
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Similarly, there is an entire function h that satisfies the following con-

ditions:

|h(z) − as(−m) −n log(1/z)| < R/4, if z ∈ Am with m > 0,

|h(z) − ln 32/63−n log(1/z)| < δ−/4, if z ∈
⋃

m>0

Bm ∪B+,

|h(z)| < K, if z ∈ D(0, 1).

Therefore, since the sets B− and Am, m < 0, are contained in D(0, 1)

and the sets B+ and Am, m > 0, are contained in C \D(0, 1), the

function log f(z) = g(z) + h(1/z) +n log z satisfies

| log f(z) − as(m)| < R/2, if z ∈ Am with m 6= 0,

| log f(z) − ln 2| < δ+/2, if z ∈
⋃

m>0

Bm ∪B+,

| log f(z) − ln 32/63| < δ−/2, if z ∈
⋃

m<0

Bm ∪B−,

and hence f has the required mapping properties.

Finally, note that this construction is symmetric with respect to the

real line and hence all Fatou components of f that intersect the real

line will be symmetric too. Thus, since transcendental self-maps of C∗

cannot have doubly connected Fatou components that do not sur-

round the origin [Bak87, Theorem 1], the Fatou components contain-

ing the sets {Am}m∈Z\{0} are pairwise disjoint and Aπ(0) is contained

in a wandering domain in Ie(f). �

4.6 construction of functions with baker domains

In this section we construct holomorphic self-maps of C∗ with Baker

domains. The construction is split into two cases: first, we deal with

the cases that the function f is a transcendental entire or meromorphic

function, that is, f(z) = zn exp(g(z)) where n ∈ Z and g is a non-

constant entire function (see Theorem 4.24), and then we deal with

the case that the function f is a transcendental self-map of C∗, that is,

f(z) = zn exp(g(z) + h(1/z)) where n ∈ Z and g,h are non-constant
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entire functions (see Theorem 4.2). For transcendental self-maps of C∗,

we are able to construct functions with Baker domains that have any

given periodic essential itinerary e ∈ {0,∞}N0 .

To that end, we use Lemma 4.21 to obtain entire functions g and,

if necessary, h so that the function f has a Baker domain. After this

approximation process, the resulting function f will behave as the

function Tλ(z) = λz, λ > 1, in a certain half-plane W. We first require

the following result that estimates the asymptotic distance between

the boundaries of logW and log Tλ(W) ⊆ logW.

Lemma 4.22. Let W = {z ∈ C : Re z > 2} and, for λ > 1, let Tλ(z) = λz.

For r > 0, let δ(r) denote the vertical distance between the curves ∂ logW

and ∂ log Tλ(W) ⊆ logW along the vertical line Vr := {z ∈ C : Re z = r}.

Then δ(r) ∼ 2(λ− 1)e−r as r→ +∞.

Proof. Since log z = ln |z|+ i arg(z), the quantity δ(r) equals the dif-

ference between the arguments of the points z1, z2 with Im zk > 0,

k ∈ {1, 2}, where the vertical lines ∂W and ∂T(W) intersect the circle

expVr of radius er (see Figure 17).

log

er

2

z2

2λ

z1

rδ(r)

δ(r)

Figure 17: Definition of the function δ(r).

Since arg z1, arg z2 → π/2 as r→ +∞, we have

δ(r) = arccos
2

er
− arccos

2λ

er
∼

(
π

2
−
2

er

)
−

(
π

2
−
2λ

er

)
=
2(λ− 1)

er
,

as r→ +∞, as required. �
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GivenN ∈N and a periodic sequence e = e0e1 · · · eN−1 ∈ {0,∞}N0 ,

let p,q ∈N denote

p = p(e) := #{k ∈N0 : ek =∞ for k < N},

q = q(e) := #{k ∈N0 : ek = 0 for k < N},
(4.5)

so that p + q = N. We want to construct a holomorphic function

f : C∗ → C∗ with an N-cycle of Baker domains that has components

U∞i , 0 6 i < p, and U0i , 0 6 i < q, in which

fNn|U∞i →∞ and fNn
|U0i
→ 0 locally uniformly as n→∞.

In the case that zero is not an essential singularity of f, then q = 0

and N = p. Note that the closure of a Baker domain in Ĉ may contain

both zero and infinity.

For p ∈N and X ⊆ C∗, we define

p
√
X := {z ∈ C∗ : zp ∈ X, |arg z| < π/p}.

In order to construct a function with an N-periodic Baker domain

that has p components around zero or infinity, we will semiconjugate

the function Tλ that we want to approximate in the half-plane W by

the pth root function:

W
Tλ //W

p
√
W

zp

OO

Tλ,p

// p
√
W.

zp

OO

Next we look at the effect of this semiconjugation on the function δ.

Lemma 4.23. Let W and Tλ, λ > 1, be as in Lemma 4.22. For p ∈ N and

λ > 1, define the function Tλ,p(z) := p
√
Tλ(zp) on p

√
W and, for r > 0,

let δp(r) denote the vertical distance between the curves ∂ log p
√
W and

∂ log Tλ,p(
p
√
W) ⊆ log p

√
W along the vertical line Vr := {z ∈ C : Re z = r}.

Then δp(r) ∼ 2(λ− 1)e−pr/p as r→ +∞.

Proof. The function z 7→ zp maps the circle of radius er to the circle of

radius epr while the function z 7→ p
√
z divides the argument of points

on that circle by p, so

δp(r) =
δ(pr)

p
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and hence, by Lemma 4.22, δp(r) ∼ 2(λ− 1)e−pr/p as r→ +∞. �

In the following theorem we construct transcendental entire or mero-

morphic functions that are self-maps of C∗ and have Baker domains

in which points escape to infinity. These functions are of the form

f(z) = zn exp(g(z)) where n ∈ Z and g is a non-constant entire func-

tion.

Theorem 4.24. For every N ∈ N and n ∈ Z, there exists a holomorphic

self-map f of C∗ with ind(f) = n that is a transcendental entire function, if

n > 0, or a transcendental meromorphic function, if n < 0, and has a cycle

of hyperbolic Baker domains of period N.

Proof. Let ωN := e2πi/N and define

Vm := ωmN
N
√
W ⊆ C \ D for 0 6 m < N,

where W is the closed half-plane from Lemma 4.22. We denote by V

the union of all Vm for 0 6 m < N, and let R := R−, if N is odd, or

R := {z ∈ C∗ : arg z = π(1− 1/N)}, if N is even. Then put

d := min{( N
√
2− 1)/3, dist(V ,R)/4}, (4.6)

and define the closed connected set

B := {z ∈ C : dist (z,V) > d and dist (z,R) > d}, (4.7)

which satisfies B ′ := D(1,d) ⊆ intB (see Figure 18).

Observe that the closed set F := B ∪ V satisfies the hypothesis of

Lemma 4.21; namely Ĉ \ F is connected and Ĉ \ F is locally connected

at infinity, and F ⊆Wα with α = 2π. We now define a function ĝ on F:

ĝ(z) :=


log
(
ωm+1
N

N

√
λ(z/ωmN )N

)
−n log z, for z ∈ Vm, 0 6 m < N,

−n log z, for z ∈ B,
(4.8)

where we have taken an analytic branch of the logarithm defined on

C∗ \ R and hence on F. Then ĝ ∈ A(F).
For r > 0, we define the positive continuous function

ε(r) := min{d ′, k−(N+1), r−(N+1)} (4.9)
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2π
p B ′

f

f

R

f

V0

V2

V1

B

f

Figure 18: Sketch of the construction in the proof of Theorem 4.24 withN=3.
The sets B and Vm, 0 6 m < N, are shaded in grey.

where the constant d ′ > 0 is so small that |ez − 1| < d for |z| < d ′

and the constant k > 0 is so large that, for all z ∈ log Tλ(W) with

Re z < k, the disc D(z,k−(N+1)) is compactly contained in logW and,

moreover, if δN(r) is the function from Lemma 4.23, then

ε(r) < δN(ln(λr)) for r > k, (4.10)

which is possible since

δN(ln(λr)) ∼
2(λ− 1)

NλNrN
as r→ +∞.

Since ε satisfies∫+∞
1

r−3/2 ln ε(r)dt = C− (N+ 1)

∫+∞
r ′0

ln r
r3/2

dr > −∞
for some constants C ∈ R and r ′0 > r0, by Lemma 4.21 (with α = 2π),

there is an entire function g such that

|g(z) − ĝ(z)| < ε(|z|) for all z ∈ F. (4.11)

We put

f(z) := zn exp(g(z)) = zn exp(ĝ(z)) exp(g(z) − ĝ(z)). (4.12)
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By Lemma 4.23 and (4.8-4.15), f(Vm) ⊆ Vm+1 for 0 6 m < N− 1 and

f(VN−1) ⊆ V0 and, by (4.6-4.15), f(B) ⊆ D(1,d). Hence each set Vm
is contained in an N-periodic Fatou component Um for 0 6 m < N

and B is contained in the immediate basin of attraction of an attract-

ing fixed point that lies in B ′. It follows that the Fatou components

Um are all simply connected.

To conclude the proof of Theorem 4.24, it only remains to check

that the Fatou components Um, 0 6 m < N, are hyperbolic Baker

domains. Due to symmetry, it suffices to deal with the case m = 0.

Let z0 ∈ U0. Since V0 ⊆ U0 is an absorbing region, we can assume

without loss of generality that z0 ∈ V0 and |z0| is sufficiently large.

For n ∈N, let

εn := g(fn−1(z0)) − ĝ(f
n−1(z0))

which, by (4.15), satisfies

|εn| < ε(|f
n−1(z0)|) as n→∞.

For n ∈N, define

Cn :=
∏

0<k6n

exp εk = exp
∑

0<k6n

εk,

which represents the quotient fn(z0)/
(
zn exp(ĝ(z0))

)
. Using the tri-

angle inequality, we obtain

|Cn| 6 exp
∑

0<k6n

|εk| < exp
∑

0<k6n

ε(|fk−1(z0)|). (4.13)

Next, we are going to show that |Cn| is bounded above for all n ∈N.

To that end, we find a lower bound for |fk(z0)| for k ∈N assuming, if

necessary, that |z0| = r0 is sufficiently large. Put K := ( N
√
λ− 1)/2 > 0.

Then |C1| > 1/K for r0 > 0 sufficiently large and, by (4.12) and (4.8),

|f(z0)| =
N
√
λ|z0||C1| >

N
√
λ

K
r0 = µr0,



4.6 construction of functions with baker domains 125

with µ := N
√
λ/K > 1. Hence, by induction and the symmetry proper-

ties of the sets Vm, 0 6 m < N,

|fk(z0)| > µ
kr0 for k ∈N. (4.14)

In particular, z0 ∈ I(f) so, by normality, the periodic Fatou compo-

nents Um, 0 6 m < N, are Baker domains. We deduce by (4.13), (4.9)

and (4.14) that |Cn| < eS for all n ∈ N, where S < +∞ is the sum of

the following geometric series

S :=

∞∑
k=0

1

(µkr0)N+1
=

1

rN+1
0

∞∑
k=0

(
1

µN+1

)k
=

µN+1

rN+1
0 (µN+1 − 1)

.

Next we use the characterisation of Lemma 4.11 to show that the

Baker domains are hyperbolic. For n ∈N, define

cn = cn(z0) =
|f(n+1)N(z0) − f

nN(z0)|

dist(fnN(z0),∂U)
.

We have

fnN(z0) = CnN
N

√
λnNzN0 = CnNλ

nz0 for n ∈N

and therefore

|f(n+1)N(z0) − f
nN(z0)| ∼ C∞λn(λ− 1)|z0| as n→∞,

where C∞ := limn→∞Cn. Also, dist(fnN(z0),∂U0) 6 eSλn|z0| and

hence if c := (λ− 1)/2 > 0, we have cn(z0) > c for all n ∈ N. Thus,

by Lemma 4.11, the Baker domain U0 is hyperbolic. This completes

the proof of Theorem 4.24. �

Finally we prove Theorem 4.2 in which we construct a function f

that is a transcendental self-map of C∗ with ind(f) = n that has a

cycle of hyperbolic Baker domains in Ie(f), where e is any prescribed

periodic essential itinerary e ∈ {0,∞}N0 .

Proof of Theorem 4.2. Let N ∈ N be the period of e and let p,q ∈ N0

denote, respectively, the number of symbols 0 and∞ in the sequence
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e0e1 . . . eN−1, where p + q = N; see (4.5). We modify the proof of

Theorem 4.24 to obtain a transcendental self-map of C∗ of the form

f(z) := zn exp(g(z)zN+1 + h(1/z)/zN+1)

that has a hyperbolic Baker domain U in Ie(f), where the entire func-

tions g,h will be constructed using approximation theory.

We start by defining a collection of p sets {V∞m}06m<p, whose clo-

sure in Ĉ contains infinity. Put ωp := e2πi/p once again and define

V∞m := ωmp
p
√
W ⊆ C \D(0, ρ) for 0 6 m < p,

where W is the half-plane from Lemma 4.22 and ρ := 1+ ( N
√
2− 1)/6.

We denote by V∞ the union of all V∞m, 0 6 m < p.

As before, we define a set B∞ that will be contained in an im-

mediate basin of attraction of f and put R∞ = R−, if p is odd, or

R∞ = {z ∈ C∗ : arg z = π(1− 1/p)}, if p is even. Then, let

d∞ := min{( N
√
2− 1)/6, dist(V∞,R∞)/4},

and define the closed connected set

B∞ := {z ∈ C : dist (z,V∞) > d∞ and dist (z,R∞) > d∞} \D(0, ρ),

which compactly contains the disc B ′∞ := D((1+ N
√
2)/2, ( N

√
2− 1)/6).

Finally, we define the disc D := D(0, 1/ρ), which is contained in D.

We will construct the function g by approximating it on the closed

set F∞ := V∞ ∪B∞ ∪D, which satisfies the hypothesis of Lemma 4.21;

namely Ĉ \ F∞ is connected and Ĉ \ F∞ is locally connected at infinity,

and F∞ ⊆Wα with α = 2π (see Figure 19).

Similarly, we define a set B0 and a collection of q unbounded sets

{V0m}06m<q by using the same procedure as above, just replacing p

by q, and then, if V0 is the union of all V0m, 0 6 m < q, we put

F0 := V0 ∪ B0 ∪D. The Fatou set of the function f will contain all the

sets V∞m, 0 6 m < p, and all the sets Ṽ0m := 1/V0m, 0 6 m < q, which

are unbounded in C∗.

In order to define the functions ĝ ∈ A(F∞) and ĥ ∈ A(F0), we

first introduce some notation to describe how ĝ and ĥ map the com-

ponents of V∞ and V0, respectively; we use the same notation as in
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B ′∞

ff

f

V∞0R∞ D

V∞2

V∞1
B∞

f

Figure 19: Sketch of the construction of the entire function g in the proof
of Theorem 4.2 with e = ∞∞00∞. The sets D, B∞ and V∞m,
0 6 m < p, are shaded in grey.

Theorem 4.1. Let π : {0, . . . ,N− 1}→ {−q, . . . ,−1, 1, . . . ,p} denote the

function given by, for 0 6 k < N,

π(k) :=


#{` ∈N0 : e` =∞ for ` < k}+ 1, if ek =∞,

− #{` ∈N0 : e` = 0 for ` < k}− 1, if ek = 0.

The function π is an ordering of the components of V∞ ∪ 1/V0 accord-

ing to the sequence e. Suppose that V is the starting component; that

is, V = Ṽ00 , if e0 = 0, and V = V∞0 , if e0 =∞. Then

fk(V) ⊆


V∞π(k), if π(k) > 0,

Ṽ0−π(k), if π(k) < 0.

For m ∈ {−q, . . . ,−1, 1, . . . ,p}, we define the function

s(m) := π(π−1(m) + 1 (mod N)),

which describes the image of the component V∞m, if m > 0, and Ṽ0m,

if m < 0, so that the function f to be constructed has a Baker domain

that has essential itinerary e. More formally, for 0 6 m < p,

f(V∞m) ⊆


V∞s(m), if s(m) > 0,

Ṽ0−s(m), if s(m) < 0;
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and, for 0 6 m < q,

f(Ṽ0m) ⊆


V∞s(−m), if s(−m) > 0,

Ṽ0−s(−m), if s(−m) < 0.

We now give the details of the construction of the entire function g

from the function ĝ ∈ A(F∞). For z ∈ V∞m, 0 6 m < p, we put

ĝ(z) :=


(

log
(
ω
s(m)
p

p

√
λ(z/ωmp )p

)
−n log z

)
/zN+1, if s(m) > 0,

(
log
(
ω
s(m)
p / p

√
λ(z/ωmp )p

)
−n log z

)
/zN+1, if s(m) < 0,

for z ∈ B∞, we put ĝ(z) := (log(1+ ( n
√
2− 1)/2) − n log z)/zN+1 and,

for z ∈ D, we put ĝ(z) := 0, where we have taken an analytic branch

of the logarithm defined on C∗ \ R∞ and hence on V∞ ∪ B∞ (see Fig-

ure 19). Then ĝ ∈ A(F∞). For r > 0, we define the positive continuous

function ε∞ by

ε∞(r) := min{d ′∞, k−(N+1)∞ , r−(N+1)}/(2rN+1)

where the constant d ′∞ > 0 is so small that |ez − 1| < d∞ for |z| < d ′∞
and the constant k∞ > 0 is so large that, for all z ∈ log Tλ(W) with

Re z < k∞, the disc D(z,k−(N+1)∞ ) is compactly contained in logW

and, moreover, if δN(r) is the function from Lemma 4.23, then

ε∞(r) · 2rN+1 < δN(ln(λr)) for r > k∞,

which, as before, is possible since

δN(ln(λr)) ∼
2(λ− 1)

NλNrN
as r→ +∞.

Since ε∞ satisfies ∫+∞
1

r−3/2 ln ε∞(r)dt > −∞,

by Lemma 4.21 (with α = 2π), there is an entire function g such that

|g(z) − ĝ(z)| <


ε∞(|z|) for z ∈ V∞ ∪B∞,

1/2 for z ∈ D.
(4.15)
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Similarly, we can construct an entire function h that approximates

a function ĥ ∈ A(F0) so that the function

f(z) := zn exp(g(z)zN+1 + h(1/z)/zN+1)

= zn exp(ĝ(z)zN+1) exp(ĥ(1/z)/zN+1)·

· exp((g(z) − ĝ(z))zN+1) exp((h(z) − ĥ(z))/zN+1)

has the desired properties. Observe that if z ∈ V∞ ∪B∞, then 1/z ∈ D
and if 1/z ∈ V0 ∪ B0, then z ∈ D. Thus, ĥ(1/z) = 0 for z ∈ V∞ ∪ B∞
and

|ĥ(1/z)/zN+1 + (g(z) − ĝ(z))zN+1 + (h(z) − ĥ(z))/zN+1| 6

6 0+ 1/(2|z|N+1) + 1/(2|z|N+1) = 1/|z|N+1

for z ∈ V∞ ∪ B∞. Therefore, by Lemma 4.23, each component of the

set V∞ ∪ 1/V0 is contained in anN-periodic Fatou component and the

sets B∞ and 1/B0 are contained in the immediate basins of attraction

of two attracting fixed points that lie in B ′∞ and B ′0, respectively (see

Figure 20; here B̃0 = 1/B0 and B̃ ′0 = 1/B
′
0).

B ′∞

f

f

V∞0

V∞2

V∞1
B∞

ff f

B̃0

B̃ ′0

f

Ṽ01 Ṽ00

f

Figure 20: Sketch of the construction of the function f in the proof of Theo-
rem 4.2 with e = ∞∞00∞. The sets B∞, B̃0 and V∞m, 0 6 m < p,
and Ṽ0m, 0 6 m < q, are shaded in grey.

Finally, a similar argument to that in the proof of Theorem 4.24

shows that the Fatou components that we have constructed are hy-

perbolic Baker domains; we omit the details. �
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Q U E S T I O N S F O R F U RT H E R R E S E A R C H

Rådström [Råd53] solved the question of what was the most general

class of holomorphic self-maps to which the main results of the itera-

tion theory of Fatou and Julia could be extended. However, the theory

of Fatou and Julia can be extended to the iteration of functions that

are not holomorphic self-maps. For instance, the iteration of transcen-

dental meromorphic functions has been widely studied (see [Ber93]).

In this chapter we describe the research done on the escaping set

of meromorphic functions with several essential singularities which

would be a natural continuation of this thesis.

5.1 iteration of meromorphic functions

We say that f is a transcendental meromorphic function (in C) if f has

an essential singularity at infinity and is holomorphic in C except for

a discrete set of poles B0(f) := f−1(∞) ⊆ C; see [Ber93] for a survey

on the iteration of meromorphic functions. Perhaps the best known

example of a transcendental meromorphic function is the tangent

function, which has poles at the odd multiples of π/2. The main differ-

ence between the iteration of transcendental entire functions and that

of transcendental meromorphic functions is the existence of points in

the set

B(f) :=
⋃

n∈N

f−n(∞),

which have a truncated orbit under iteration by f. Note that B(f) is

always countable.

Let f be a transcendental meromorphic function that is not entire.

If infinity is an exceptional value of f, then since meromorphic func-

tions have at most two exceptional values, f has a single pole that is

omitted and hence is conjugated to a holomorphic self-map of C∗ of

the form f(z) = zn exp(g(z)) where n < 0 and g is a non-constant en-

tire function; we discussed the iteration of such functions in Chapter 1.

131
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Otherwise, f has at least two poles or one pole that is not omitted, and

we denote this set of functions by M∞. However, observe that, unlike

for entire functions, the set M∞ is not closed under composition; we

shall discuss this fact in the next section.

Baker, Kotus and Lü studied the iteration of meromorphic func-

tions in the series of papers [BKL91a; BKL90; BKL91b; BKL92]. For

functions f ∈ M∞, we define the Fatou set F(f) in the usual way

but adding the requirement that for z ∈ F(f), fn(z) is defined for all

n ∈ N. Then, since B(f) contains infinitely many points (in fact, the

set f−2(B0) is already infinite), it follows from Montel’s theorem that

J(f) = C \ F(f) = B(f). Recall that O−(z0, f) = {z ∈ C : z0 = fn(z)

for some n ∈ N}. In [BKL91a], the authors showed that if z0 ∈ C

is not an exceptional value, then J(f) ⊆ O−(z0, f) ′ and hence J(f) is

perfect and J(f) = B(f) ′.

The iteration of Tλ(z) := λ tan z, λ ∈ R \ {0}, was considered for

the first time by Devaney and Keen [DK89] who showed that either

J(Tλ) = R, if |λ| > 1, or J(Tλ) ⊆ R is a Cantor set, if 0 < |λ| < 1. Later,

Keen and Kotus [KK97] studied the dynamics of Tλ for λ ∈ C∗ (see

also [Jia91]).

We can also consider the iteration of transcendental meromorphic

functions in C∗, that is, functions that have two essential singularities,

at zero and infinity, and are holomorphic in C∗ except for discrete sets

of zeros and poles. Such functions are to transcendental self-maps

of C∗ what transcendental meromorphic functions are to transcen-

dental entire functions. Examples of these functions are given by

f(z) = m(z+ 1/z) or g(z) = m(z)m̃(1/z)

where m and m̃ are transcendental meromorphic functions (in C).

If f is a transcendental meromorphic function in C∗ that has a finite

number of zeros and poles, then f is of the form

f(z) = R(z) exp(g(z) + h(1/z))

where R is a rational function and g,h are non-constant entire func-

tions. The iteration of transcendental meromorphic functions in C∗

should be related to the iteration of transcendental self-maps of C∗

that we study in this thesis, in the same way that the iteration of
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transcendental meromorphic functions (in C) is related to the itera-

tion of transcendental entire functions. We plan to study the escaping

set of such functions in the course of studying more general classes

of meromorphic functions, described in the next section.

5.2 the works of bolsch and herring

In general, the composition of two transcendental meromorphic func-

tions f,g is not a transcendental meromorphic function because the

poles of the first function f become essential singularities of the com-

position g ◦ f. Note that these points may not be isolated singularities,

so here we are using the term essential singularity in a wider sense to

denote any obstruction to analytic continuation that is not a pole.

Far less is known about the iteration of meromorphic functions

with more than one essential singularity. In this direction, in their

theses, Bolsch [Bol97] (supervised by Prof. Pommerenke) and Her-

ring [Her95] (supervised by Prof. Baker) proposed, independently,

two generalisations of transcendental meromorphic functions with

several essential singularities for which the Fatou and Julia theory

extends, with appropriate modifications.

Bolsch’s class K

Bolsch introduced the following class of meromorphic functions

K :=

f :
there is a compact countable set E(f) ⊆ Ĉ such that

f is meromorphic in Ĉ \ E(f) but in no proper superset

 ,

which is the smallest class that is closed under composition and con-

tains the set of transcendental meromorphic functions (in C∗) that

we denoted by M∞ earlier. Note that originally Bolsch denoted this

class by S but this could be confused with the Speiser class of finite

type transcendental entire functions, so instead we follow the nota-

tion from [BDH01].

In [Bol96], the author showed that if f ∈ K is not a Möbius trans-

formation, then the repelling cycles of f are dense in J(f). Later on, in

[Bol99], Bolsch studied how Fatou components map to each other un-
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der iteration by meromorphic functions and, for f ∈ K, proved that

if U and U ′ are Fatou components of f such that f(U) ⊆ U ′, then

U ′ \U contains at most two points (see also [Her98]). He also proved

that, more generally, if E(f) is a set of capacity zero, then the Fatou

components of f are simply, doubly or infinitely connected.

Herring’s class M

Herring studied the iteration of what he called meromorphic func-

tions outside a small set. He introduced the class

M :=


f :

there is a compact totally disconnected set E(f) ⊆ Ĉ

such that f is meromorphic in Ĉ \ E(f) and

the cluster set C(f, Ĉ \ E(f),α) = Ĉ for all α ∈ E(f);
if E(f) = ∅, then f is neither constant nor univalent


.

If E ⊆ Ĉ is a compact totally disconnected set and f : Ĉ \ E → Ĉ is

a meromorphic function, we define the cluster set of f at α ∈ E with

respect to the set Ĉ \ E by

C(f, Ĉ \ E,α) :=

w ∈ Ĉ :
there is (zn) ⊆ Ĉ \ E such that

zn → α and f(zn)→ w as n→∞
 .

The class M is closed under composition and contains the class K.

For every compact totally disconnected set E ⊆ Ĉ it is possible to

construct a function f ∈M with E(f) = E and, under some additional

hypothesis on E ⊆ Ĉ, every function that is meromorphic in Ĉ \ E

and has essential singularities at every point of E is in the class M

(see [BDH01; BDH04]).

Herring also studied the following subclasses of M consisting of

functions that satisfy a k-Picard property and that are closed under

composition. For k > 2, he defined

MPk :=

f ∈M :
E(f) 6= ∅ and for every α ∈ E(f) and

open set U 3 α, # Ĉ \ f(U \ E(f)) 6 k

 ,
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note that K ⊂ MP2. Finally, some of the results from [BDH01] were

proven for the following class of finite-type functions

MS := {f ∈M : sing(f−1) is finite}

that is the analogue of the Speiser class S. They adapted the tech-

niques from [EL92] to show that functions in MS have no Baker do-

mains and they also proved a ’no wandering domains’ theorem for a

subclass of MS.

5.3 the escaping set of a meromorphic function

Domínguez [Dom98] defined the escaping set of a transcendental

meromorphic function f by

I(f) := {z ∈ C : fn(z) 6=∞ for all n ∈N and fn(z)→∞ as n→∞}

and proved that the analogues of Eremenko’s properties (I1) and (I2)

hold in this setting, namely

I(f)∩ J(f) 6= ∅ and J(f) = ∂I(f).

She also observed that property (I3) does not necessarily hold, that is,

the components of I(f) may be bounded even in the case that f has a

single pole.

For a transcendental meromorphic function f in C∗, we can define

the escaping set by

I(f) := {z ∈ C∗ : fn(z) /∈ {0,∞} for all n ∈N and ω(z, f) ⊆ {0,∞}}

and, similarly, we can adapt Definition 2.2 to define sets Ie(f) ⊆ I(f),
for e ∈ {0,∞}N0 . It would be interesting to study the properties of

such sets and, in particular, see whether analogues of properties (I1)

and (I2) hold in this setting as well.

Regarding the iteration of meromorphic functions with several es-

sential singularities, very little is known about the escaping set. If
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f : Ĉ \E(f)→ Ĉ is a meromorphic function and E(f) consists of essen-

tial singularities of f, then we define

I(f) := {z ∈ Ĉ \ E(f) : fn(z) /∈ E(f) for all n ∈N and ω(z, f) ⊆ E(f)}.

There is no mention of I(f) in the works of Bolsch. In [BDH01], the

authors considered the following subsets of I(f) for functions f in the

class M. For α ∈ E(f), they defined

I(f,α) := {z ∈ Ĉ\E(f) : fn(z) /∈ E(f) for n ∈N and fn(z)→ α as n→∞}

and, for f ∈ MPk, k > 2, proved that these sets satisfy the properties

(I1) and (I2):

J(f)∩ I(f,α) 6= ∅ and J(f) = ∂I(f,α).

Note that if E(f) = {0,∞} and f is a transcendental self-map of C∗,

then I(f, 0) = I0(f) and I(f,∞) = I∞(f). However, the approach that

we follow in this thesis takes into consideration every possible way of

accumulating to E(f). It would be interesting to investigate whether

the notion of essential itinerary can be adapted to study the escaping

set of functions in the classes K or M and see if Eremenko’s properties

(I1) and (I2) hold for more general subsets of I(f).
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admissible external address,

77, 81

annular itinerary, 12

Arnol’d standard family, 15

asymptotic path, 7, 56

asymptotic value, 7, 56

attracting periodic orbit, 4

Böttcher map, 8

backward orbit, 2

Baker domain, 6

basin of attraction, 6

blow-up property, 3

bounded slope, 68

bounded wiggling, 68

bounded-type function, 10, 57

broken dynamic ray, 85

Cantor bouquet, 95

chaos, 5

cluster set, 134

comb, 97

complex plane, 1

complex standard family, 15

critical value, 7, 56

disjoint-type function, 12, 53,

67

dynamic ray, 85

endpoint, 95

Eremenko’s conjecture, 9

Eremenko’s properties, 9

Eremenko-Lyubich class B, 10

escaping set, 8, 76

essential itinerary, 76, 77

expansivity property, 64

external address, 77, 80

Fatou component, 5

Fatou set, 2

filled Julia set, 8

finite order, 52, 70

finite order function, 11

finite-type function, 7, 9, 57

fixed point, 4

fundamental domain, 79

fundamental strip, 79

good geometry properties, 55,

68

hairy arc, 97

head-start condition, 89

Herman ring, 6

hyperbolic density, 44

hyperbolic distance, 37, 44

index, 14

indifferent periodic orbit, 4

intermediate external address,

96

invariant set, 2

irrationally indifferent

periodic orbit, 4

Julia set, 2, 75

landing, 54
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landing dynamic ray, 85

Leau domain, 6

lexicographic order, 75, 79

lift, 14, 63

logarithmic singularity, 61

logarithmic tract, 62

logarithmic transform, 62

lower order, 52, 74

meromorphic function, 1

multiplier, 4

orbit, 2

order, 52

parabolic basin of attraction, 6

parabolic periodic orbit, 4

periodic dynamic ray, 85

periodic point, 4

periodic ray, 93

postsingular set, 54, 57

punctured plane, 1

rationally indifferent periodic

orbit, 4

ray tail, 85

repelling periodic orbit, 4

Riemann sphere, 1

sensitive dependence on initial

conditions, 5

Siegel disc, 6

singular set, 57

speed ordering, 90

Speiser class, 7, 72

straight brush, 94

subshift of finite type, 77

superattracting periodic orbit,

4

topological transitivity, 5

unbounded continuum, 81

unbounded set in C∗, 27, 82

unbounded set in C∗, 16

wandering domain, 6



N O TAT I O N

(an) Sequence given by a0,a1,a2, . . .

A(f) Fast escaping set of a function f (see Section 1.2)

Ae(f) Set of fast escaping points of a transcendental self-map

of C∗ with essential itinerary e (see Definition 2.3)

A−`,k
e (f,R) Level of the fast escaping set Ae(f) (see Definition 2.3)

A(F) Class of continuous functions f : F→ C that are holomor-

phic in int F

AV(f) Set of asymptotic values of a function f (see Section 1.1)

AVα(f) Set of asymptotic values of a transcendental self-map f

of C∗with asymptotic path to α ∈ {0,∞} (see Section 3.2)

B Eremenko-Lyubich class of bounded-type transcenden-

tal entire functions (see Section 1.2)

B∗ Class of bounded-type transcendental self-maps of the

punctured plane (see Section 3.1)

B(f) Set of poles and prepoles of a transcendental meromor-

phic function f (see Section 5.1)

C Complex plane

Ĉ Riemann sphere C∪ {∞}

C∗ Punctured plane C \ {0}

C(f,X,α) Cluster set of a function f at a point α with respect to a

set X (see Section 5.2)

C(X) Class of continuous functions f : X→ C

C[z] Set of polynomials in z with complex coefficients
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152 notation

CP(f) Set of critical points of a function f (see Section 1.1)

CV(f) Set of critical values of a function f (see Section 1.1)

D Unit disc {z ∈ C : |z| < 1}

dist(X, Y) Euclidean distance between two sets X, Y ⊆ C

D(z0,R) Disc of radius R > 0 centered at z0, {z ∈ C : |z− z0| < R}

E(f) Set of essential singularities of a function f ∈M

Eλ(z) Exponential family Eλ(z) = λ exp z for λ ∈ C∗

f̃ Lift of a function f (f̃ is not unique)

f−1 Inverse of a function f

f ∼ g f(r) ∼ g(r) as r→ +∞ means that f(r)/g(r)→ 1 as r→ +∞
fn nth iterate of a function f given by f ◦ n· · · ◦f for n ∈N

f|X Restriction of a function f to a set X

F(f) Fatou set of a function f (see Section 1.1)

H Right half-plane {z ∈ C : Re z > 0}

HR Right half-plane {z ∈ C : Re z > R} for R > 0

H±R Set {z ∈ C : |Re z| > R} for R > 0 consisting of the union

of a left half-plane and a right half-plane

I(f) Escaping set of a function f (see Section 1.2)

Ie(f) Set of escaping points of a transcendental self-map of C∗

with essential itinerary e (see Definition 2.2)

I−`,ke (f) Subset of the escaping set Ie(f) consisting of points z such

that f`(z) has essential itinerary σk(e) (see Definition 2.2)

intX Interior of a set X

Im z Imaginary part of a point z ∈ C

J(f) Julia set of a function f (see Section 1.1)

K Bolsch’s class of meromorphic functions outside a closed

countable set of essential singularities (see Section 5.2)
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M(r, f) Maxmimum modulus of a function f on the circle of radi-

us r > 0, also written M(r)

m(r, f) Minimum modulus of a function f on the circle of radius

r > 0, also written m(r)

M Herring’s class of meromorphic functions outside a small

set of essential singularities (see Section 5.2)

MPk Class of functions in M that satisfy a k-Picard property

(see Section 5.2)

MS Class of finite-type functions in M (see Section 5.2)

M∞ Class of transcendental meromorphic functions (in C) (see

Section 5.1)

N Set of natural numbers 1, 2, 3, . . .

N0 Set of non-negative integers N∪ {0}

O(g(r)) f(r) = O(g(r)) as r→ +∞ means that there is C > 0 such

that |f(r)| 6 C|g(r)| for all r > 0 sufficiently large

O+(z0, f) Forward orbit of a point z0 under iteration by a function f

O−(z0, f) Backward orbit of a point z0 under iteration by a function f

O(z0, f) Grand orbit of a point z0 under iteration by a function f

Q Set of rational numbers p/q with p,q ∈ Z

P(f) Postsingular set of a function f (see Section 3.2)

Re z Real part of a point z ∈ C

S Speiser class of finite-type transcendental entire functions

(see Section 1.1)

S(f) Set of singular values of a function f (see Section 1.1)

sing(f−1) Set of inverse function singularities of a function f (see Section 1.1)

Tλ(z) Tangent family Tλ(z) = λ tan z for λ ∈ C∗

X Closure of a set X in C
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X̂ Closure of a set X in Ĉ

XN0 Set of all sequences of elements of a set X

∂X Boundary of a set X

∂in X Inner boundary of a doubly connected set X

∂out X Outer boundary of a doubly connected set X

Z Set of integer numbers . . . ,−1, 0, 1, . . .

λ(f) Lower order of an entire function f (see Section 3.1)

ρ(f) Order of an entire function f (see Section 3.1)

ρα(f) Order of a transcendental self-map f of C∗ at α ∈ {0,∞}

(see Definition 3.30)

ρΩ(z) Hyperbolic density in a domain Ω

ω(z0, f) Omega-limit set of the orbit of a point z0 under iteration

by a function f

#X Cardinality of a set X

[z,w]Ω Hyperbolic distance from z to w in a domain Ω
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