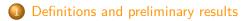
On the construction of entire functions in the Speiser class

Simon Albrecht

Christian-Albrechts-Universität zu Kiel

London, 11 March 2015

Definitions and preliminary results



Let $G \subset \mathbb{C}$ be a domain and $f : G \to \mathbb{C}$ partially differentiable.

Let $G \subset \mathbb{C}$ be a domain and $f : G \to \mathbb{C}$ partially differentiable. The *Wirtinger derivatives* are

Let $G \subset \mathbb{C}$ be a domain and $f : G \to \mathbb{C}$ partially differentiable. The *Wirtinger derivatives* are

$$f_z := \frac{1}{2} \left(f_x - i f_y \right)$$

Let $G \subset \mathbb{C}$ be a domain and $f : G \to \mathbb{C}$ partially differentiable. The *Wirtinger derivatives* are

$$\begin{split} f_z &:= \frac{1}{2} \left(f_x - i f_y \right) \\ f_{\bar{z}} &:= \frac{1}{2} \left(f_x + i f_y \right). \end{split}$$

Let $G \subset \mathbb{C}$ be a domain and $f : G \to \mathbb{C}$ partially differentiable. The *Wirtinger derivatives* are

$$\begin{split} f_z &:= \frac{1}{2} \left(f_x - i f_y \right) \\ f_{\bar{z}} &:= \frac{1}{2} \left(f_x + i f_y \right). \end{split}$$

Remark

• $f_{\overline{z}} \equiv 0$ iff f is holomorphic (Cauchy-Riemann equations).

Let $G \subset \mathbb{C}$ be a domain and $f : G \to \mathbb{C}$ partially differentiable. The *Wirtinger derivatives* are

$$\begin{split} f_z &:= \frac{1}{2} \left(f_x - i f_y \right) \\ f_{\bar{z}} &:= \frac{1}{2} \left(f_x + i f_y \right). \end{split}$$

Remark

• $f_{\overline{z}} \equiv 0$ iff f is holomorphic (Cauchy-Riemann equations). Then: $f_z = f'$.

Let $G \subset \mathbb{C}$ be a domain and $f : G \to \mathbb{C}$ partially differentiable. The *Wirtinger derivatives* are

$$\begin{split} f_{z} &:= \frac{1}{2} \left(f_{x} - i f_{y} \right) \\ f_{\overline{z}} &:= \frac{1}{2} \left(f_{x} + i f_{y} \right). \end{split}$$

Remark

- $f_{\overline{z}} \equiv 0$ iff f is holomorphic (Cauchy-Riemann equations). Then: $f_z = f'$.
- chain rule

Let $G \subset \mathbb{C}$ be a domain and $f : G \to \mathbb{C}$ partially differentiable. The *Wirtinger derivatives* are

$$\begin{split} f_{z} &:= \frac{1}{2} \left(f_{x} - i f_{y} \right) \\ f_{\overline{z}} &:= \frac{1}{2} \left(f_{x} + i f_{y} \right). \end{split}$$

Remark

• $f_{\overline{z}} \equiv 0$ iff f is holomorphic (Cauchy-Riemann equations). Then: $f_z = f'$.

chain rule

$$(g \circ f)_z = (g_z \circ f) f_z + (g_{\overline{z}} \circ f) \overline{f_{\overline{z}}}$$

Let $G \subset \mathbb{C}$ be a domain and $f : G \to \mathbb{C}$ partially differentiable. The *Wirtinger derivatives* are

$$\begin{split} f_{z} &:= \frac{1}{2} \left(f_{x} - i f_{y} \right) \\ f_{\overline{z}} &:= \frac{1}{2} \left(f_{x} + i f_{y} \right). \end{split}$$

Remark

• $f_{\overline{z}} \equiv 0$ iff f is holomorphic (Cauchy-Riemann equations). Then: $f_z = f'$.

chain rule

$$(g \circ f)_{z} = (g_{z} \circ f) f_{z} + (g_{\overline{z}} \circ f) \overline{f_{\overline{z}}}$$
$$(g \circ f)_{\overline{z}} = (g_{z} \circ f) f_{\overline{z}} + (g_{\overline{z}} \circ f) \overline{f_{z}}$$

Let $U \subset \mathbb{C}$ be open. A measurable function $\mu : U \to \mathbb{C}$ is called a *k-Beltrami coefficient* of U if $\|\mu\|_{\infty} = k < 1$.

Let $U \subset \mathbb{C}$ be open. A measurable function $\mu : U \to \mathbb{C}$ is called a *k-Beltrami coefficient* of U if $\|\mu\|_{\infty} = k < 1$.

Definition

Let U, V be open sets in \mathbb{C} .

Let $U \subset \mathbb{C}$ be open. A measurable function $\mu : U \to \mathbb{C}$ is called a *k-Beltrami coefficient* of U if $\|\mu\|_{\infty} = k < 1$.

Definition

Let U, V be open sets in \mathbb{C} . A map $\phi : U \to V$ is said to be *quasiregular* if it has locally square integrable weak derivatives

Let $U \subset \mathbb{C}$ be open. A measurable function $\mu : U \to \mathbb{C}$ is called a *k-Beltrami coefficient* of U if $\|\mu\|_{\infty} = k < 1$.

Definition

Let U, V be open sets in \mathbb{C} . A map $\phi : U \to V$ is said to be *quasiregular* if it has locally square integrable weak derivatives and the function

$$\mu_{\phi}(z) = \frac{\phi_{\bar{z}}(z)}{\phi_{z}(z)}$$

is a k-Beltrami coefficient.

Let $U \subset \mathbb{C}$ be open. A measurable function $\mu : U \to \mathbb{C}$ is called a *k-Beltrami coefficient* of U if $\|\mu\|_{\infty} = k < 1$.

Definition

Let U, V be open sets in \mathbb{C} . A map $\phi : U \to V$ is said to be *quasiregular* if it has locally square integrable weak derivatives and the function

$$\mu_{\phi}(z) = \frac{\phi_{\overline{z}}(z)}{\phi_{z}(z)}$$

is a *k*-Beltrami coefficient. A quasiregular homeomorphism is called *quasiconformal*.

Given a k-Beltrami coefficient μ

Given a k-Beltrami coefficient $\mu,$ does there exist a quasiconformal map ϕ such that $\mu_{\phi}=\mu?$

Given a k-Beltrami coefficient μ , does there exist a quasiconformal map ϕ such that $\mu_{\phi} = \mu$? (i.e. $\phi_{\bar{z}} = \mu \cdot \phi_z$, ϕ is a solution of the Beltrami equation)

Given a k-Beltrami coefficient μ , does there exist a quasiconformal map ϕ such that $\mu_{\phi} = \mu$? (i.e. $\phi_{\bar{z}} = \mu \cdot \phi_z$, ϕ is a solution of the Beltrami equation)

Answer:

Theorem (Measurable Riemann Mapping Theorem (MRMT))

Let $\mu : \mathbb{C} \to \mathbb{C}$ be a k-Beltrami coefficient.

Given a k-Beltrami coefficient μ , does there exist a quasiconformal map ϕ such that $\mu_{\phi} = \mu$? (i.e. $\phi_{\bar{z}} = \mu \cdot \phi_z$, ϕ is a solution of the Beltrami equation)

Answer:

Theorem (Measurable Riemann Mapping Theorem (MRMT))

Let $\mu : \mathbb{C} \to \mathbb{C}$ be a k-Beltrami coefficient. Then there exists a unique quasiconformal map $\phi : \mathbb{C} \to \mathbb{C}$ such that $\phi(0) = 0$, $\phi(1) = 1$, $\mu_{\phi} = \mu$.

Given a k-Beltrami coefficient μ , does there exist a quasiconformal map ϕ such that $\mu_{\phi} = \mu$? (i.e. $\phi_{\bar{z}} = \mu \cdot \phi_z$, ϕ is a solution of the Beltrami equation)

Answer:

Theorem (Measurable Riemann Mapping Theorem (MRMT))

Let $\mu : \mathbb{C} \to \mathbb{C}$ be a k-Beltrami coefficient. Then there exists a unique quasiconformal map $\phi : \mathbb{C} \to \mathbb{C}$ such that $\phi(0) = 0$, $\phi(1) = 1$, $\mu_{\phi} = \mu$.

Corollary

Let $g : \mathbb{C} \to \mathbb{C}$ be quasiregular.

Given a k-Beltrami coefficient μ , does there exist a quasiconformal map ϕ such that $\mu_{\phi} = \mu$? (i.e. $\phi_{\bar{z}} = \mu \cdot \phi_z$, ϕ is a solution of the Beltrami equation)

Answer:

Theorem (Measurable Riemann Mapping Theorem (MRMT))

Let $\mu : \mathbb{C} \to \mathbb{C}$ be a k-Beltrami coefficient. Then there exists a unique quasiconformal map $\phi : \mathbb{C} \to \mathbb{C}$ such that $\phi(0) = 0$, $\phi(1) = 1$, $\mu_{\phi} = \mu$.

Corollary

Let $g : \mathbb{C} \to \mathbb{C}$ be quasiregular. Then there exists a quasiconformal map ϕ such that $f := g \circ \phi^{-1}$ is holomorphic.

• introduced by C. Bishop

- introduced by C. Bishop
- first preprint in 2011

- introduced by C. Bishop
- first preprint in 2011
- appeared in acta mathematica (214:1(2015) 1-60)

- introduced by C. Bishop
- first preprint in 2011
- appeared in acta mathematica (214:1(2015) 1-60)
- Bishop constructs among other examples

- introduced by C. Bishop
- first preprint in 2011
- appeared in acta mathematica (214:1(2015) 1-60)
- Bishop constructs among other examples
 - $f \in S$ with arbitrary order of growth (originally due to S. Merenkov)

- introduced by C. Bishop
- first preprint in 2011
- appeared in acta mathematica (214:1(2015) 1-60)
- Bishop constructs among other examples
 - $f \in S$ with arbitrary order of growth (originally due to S. Merenkov)
 - $\bullet\,$ counterexamples in ${\mathcal S}$ for the area conjecture and the strong Eremenko conjecture

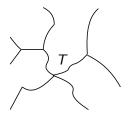
The idea behind quasiconformal folding is quite simple.

The idea behind quasiconformal folding is quite simple. Let f be a function in class S with no asymptotic value and exactly two critical values (±1).

The idea behind quasiconformal folding is quite simple. Let f be a function in class S with no asymptotic value and exactly two critical values (±1).

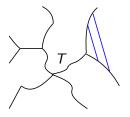
-1 1

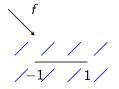
The idea behind quasiconformal folding is quite simple. Let f be a function in class S with no asymptotic value and exactly two critical values (± 1).



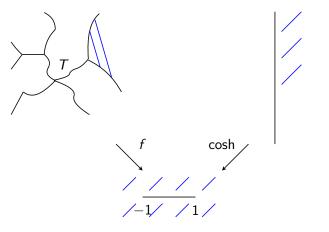
-1 1

The idea behind quasiconformal folding is quite simple. Let f be a function in class S with no asymptotic value and exactly two critical values (± 1).

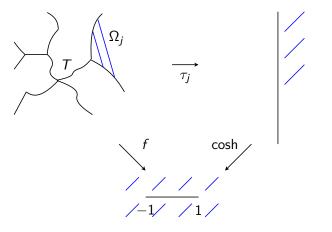




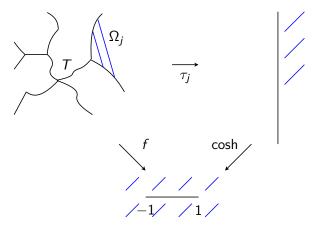
The idea behind quasiconformal folding is quite simple. Let f be a function in class S with no asymptotic value and exactly two critical values (± 1).



The idea behind quasiconformal folding is quite simple. Let f be a function in class S with no asymptotic value and exactly two critical values (±1).



The idea behind quasiconformal folding is quite simple. Let f be a function in class S with no asymptotic value and exactly two critical values (±1).



Reverse this procedure!

S. Albrecht (CAU Kiel)

Definition

We say that T has bounded geometry if:

• The edges are C^2 with uniform bounds.

Definition

We say that T has bounded geometry if:

- The edges are C^2 with uniform bounds.
- The angles between adjacent edges are uniformly bounded away from zero.

Definition

We say that T has bounded geometry if:

- The edges are C^2 with uniform bounds.
- The angles between adjacent edges are uniformly bounded away from zero.
- Adjacent edges have uniformly comparable lengths.

Definition

We say that T has bounded geometry if:

- The edges are C^2 with uniform bounds.
- The angles between adjacent edges are uniformly bounded away from zero.
- Adjacent edges have uniformly comparable lengths.
- For non-adjacent edges e and f, $\frac{\text{diam}(e)}{\text{dist}(e,f)}$ is uniformly bounded.

Let T be an unbounded, locally finite, connected graph.

• R-component: unbounded components, which are mapped onto the right half-plane, $\sigma : \mathbb{H}_r \to \mathbb{C}$ is essentially cosh

- R-component: unbounded components, which are mapped onto the right half-plane, $\sigma : \mathbb{H}_r \to \mathbb{C}$ is essentially cosh
- L-component: unbounded Jordan domains, which are mapped onto the left half-plane, $\sigma : \mathbb{H}_I \to \mathbb{C}$ is just exp (these components assign asymptotic values)

- R-component: unbounded components, which are mapped onto the right half-plane, $\sigma : \mathbb{H}_r \to \mathbb{C}$ is essentially cosh
- L-component: unbounded Jordan domains, which are mapped onto the left half-plane, $\sigma : \mathbb{H}_I \to \mathbb{C}$ is just exp (these components assign asymptotic values)
- D-component: bounded Jordan domains (they assign other critical values and higher order critical points). We will not use these.

Suppose T is a bounded geometry tree and suppose τ is conformal from each complementary component of T to its standard version (i.e. left/right half-plane).

Suppose T is a bounded geometry tree and suppose τ is conformal from each complementary component of T to its standard version (i.e. left/right half-plane). Assume that

• L components only share edges with R components.

Suppose T is a bounded geometry tree and suppose τ is conformal from each complementary component of T to its standard version (i.e. left/right half-plane). Assume that

- L components only share edges with R components.
- on L components τ maps edges to intervals of length 2π on ∂ℍ₁ with endpoints in 2πiℤ,

Suppose T is a bounded geometry tree and suppose τ is conformal from each complementary component of T to its standard version (i.e. left/right half-plane). Assume that

- L components only share edges with R components.
- on L components τ maps edges to intervals of length 2π on ∂ℍ₁ with endpoints in 2πiℤ,
- on R components the τ -sizes of all edges are $\geq 2\pi$.

Suppose T is a bounded geometry tree and suppose τ is conformal from each complementary component of T to its standard version (i.e. left/right half-plane). Assume that

- L components only share edges with R components.
- on L components τ maps edges to intervals of length 2π on ∂ℍ₁ with endpoints in 2πiZ,
- on R components the τ -sizes of all edges are $\geq 2\pi$.

Then there is an entire function f and a quasiconformal map ϕ of the plane so that $f \circ \phi = \sigma \circ \tau$ off $T(r_0)$ (a neighbourhood of T).

Suppose T is a bounded geometry tree and suppose τ is conformal from each complementary component of T to its standard version (i.e. left/right half-plane). Assume that

- L components only share edges with R components.
- on L components τ maps edges to intervals of length 2π on ∂ℍ₁ with endpoints in 2πiZ,
- on R components the τ -sizes of all edges are $\geq 2\pi$.

Then there is an entire function f and a quasiconformal map ϕ of the plane so that $f \circ \phi = \sigma \circ \tau$ off $T(r_0)$ (a neighbourhood of T). The only singular values of f are ± 1 (critical values coming from the vertices of T) and the singular values assigned by the L components.

Given a simply connected, unbounded domain G, does there exist $f \in S$ such that " $G = \{z \in \mathbb{C} : |f(z)| > R\}$ "?

Given a simply connected, unbounded domain G, does there exist $f \in S$ such that " $G = \{z \in \mathbb{C} : |f(z)| > R\}$ "?

Idea: Use qc-folding

Given a simply connected, unbounded domain *G*, does there exist $f \in S$ such that " $G = \{z \in \mathbb{C} : |f(z)| > R\}$ "?

Idea: Use qc-folding: $G \triangleq R$ -component, $\mathbb{C} \setminus \overline{G} \triangleq L$ -component, make ∂G a bounded geometry tree

Idea

Question

Given a simply connected, unbounded domain G, does there exist $f \in S$ such that " $G = \{z \in \mathbb{C} : |f(z)| > R\}$ "?

Idea: Use qc-folding: $G \stackrel{\wedge}{=} R$ -component, $\mathbb{C} \setminus \overline{G} \stackrel{\wedge}{=} L$ -component, make ∂G a bounded geometry tree

Problem

Not all domains G are possible.

Given a simply connected, unbounded domain G, does there exist $f \in S$ such that " $G = \{z \in \mathbb{C} : |f(z)| > R\}$ "?

Idea: Use qc-folding: $G \stackrel{\wedge}{=} R$ -component, $\mathbb{C} \setminus \overline{G} \stackrel{\wedge}{=} L$ -component, make ∂G a bounded geometry tree

Problem

Not all domains G are possible.

Assumptions on G:

Given a simply connected, unbounded domain G, does there exist $f \in S$ such that " $G = \{z \in \mathbb{C} : |f(z)| > R\}$ "?

Idea: Use qc-folding: $G \stackrel{\wedge}{=} R$ -component, $\mathbb{C} \setminus \overline{G} \stackrel{\wedge}{=} L$ -component, make ∂G a bounded geometry tree

Problem

Not all domains G are possible.

Assumptions on G:

• ∂G sufficiently nice (see bounded geometry)

Given a simply connected, unbounded domain G, does there exist $f \in S$ such that " $G = \{z \in \mathbb{C} : |f(z)| > R\}$ "?

Idea: Use qc-folding: $G \stackrel{\wedge}{=} R$ -component, $\mathbb{C} \setminus \overline{G} \stackrel{\wedge}{=} L$ -component, make ∂G a bounded geometry tree

Problem

Not all domains G are possible.

Assumptions on G:

- ∂G sufficiently nice (see bounded geometry)
- G symmetric with respect to $\mathbb R$ (to make the formulation easier)

Given a simply connected, unbounded domain G, does there exist $f \in S$ such that " $G = \{z \in \mathbb{C} : |f(z)| > R\}$ "?

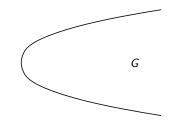
Idea: Use qc-folding: $G \stackrel{\wedge}{=} R$ -component, $\mathbb{C} \setminus \overline{G} \stackrel{\wedge}{=} L$ -component, make ∂G a bounded geometry tree

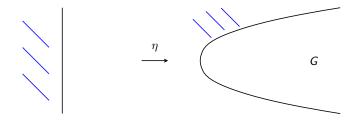
Problem

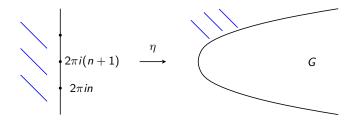
Not all domains G are possible.

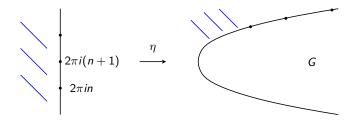
Assumptions on G:

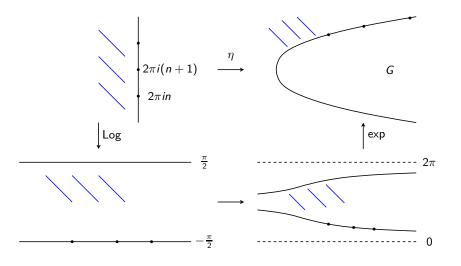
- ∂G sufficiently nice (see bounded geometry)
- G symmetric with respect to \mathbb{R} (to make the formulation easier)
- ullet width of tract \sim length of edge (see bounded geometry)

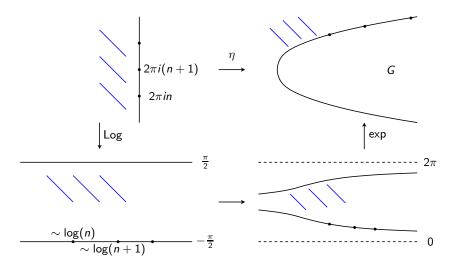


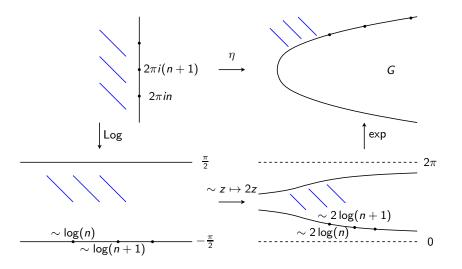


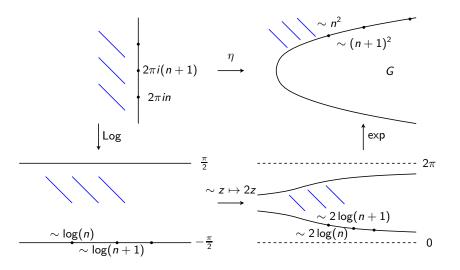


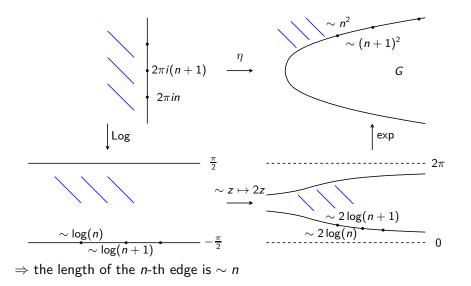


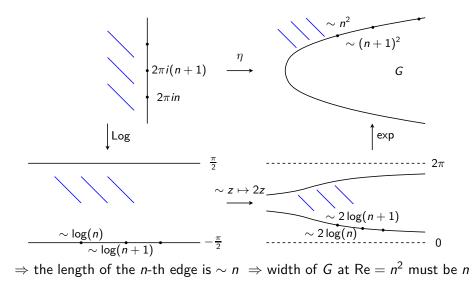












Theorem

Let $0 \le \delta \le \frac{1}{2}$.

Let
$$0 \le \delta \le \frac{1}{2}$$
. For $\delta = 0$ let $\gamma < 0$

Let
$$0 \le \delta \le \frac{1}{2}$$
. For $\delta = 0$ let $\gamma < 0$, for $\delta = \frac{1}{2}$ let $\gamma \ge 1$

Let $0 \le \delta \le \frac{1}{2}$. For $\delta = 0$ let $\gamma < 0$, for $\delta = \frac{1}{2}$ let $\gamma \ge 1$ and let $\gamma \in \mathbb{R}$ otherwise.

Let $0 \le \delta \le \frac{1}{2}$. For $\delta = 0$ let $\gamma < 0$, for $\delta = \frac{1}{2}$ let $\gamma \ge 1$ and let $\gamma \in \mathbb{R}$ otherwise. Let k > 0 and

$$G := \left\{ r e^{i \varphi} : r > 1, |\varphi| < k \cdot \frac{(\log r)^{\gamma}}{r^{\delta}}
ight\}.$$

Let $0 \le \delta \le \frac{1}{2}$. For $\delta = 0$ let $\gamma < 0$, for $\delta = \frac{1}{2}$ let $\gamma \ge 1$ and let $\gamma \in \mathbb{R}$ otherwise. Let k > 0 and

$${\mathcal G} := \left\{ r e^{i arphi} \ : \ r > 1, \ |arphi| < k \cdot rac{(\log r)^{\gamma}}{r^{\delta}}
ight\}.$$

Then there exist a quasiregular map g and constants $k_0>0,\ r_0>1$ and $R\geq 1$

Let $0 \le \delta \le \frac{1}{2}$. For $\delta = 0$ let $\gamma < 0$, for $\delta = \frac{1}{2}$ let $\gamma \ge 1$ and let $\gamma \in \mathbb{R}$ otherwise. Let k > 0 and

$${\mathcal G} := \left\{ r e^{i arphi} \ : \ r > 1, \ |arphi| < k \cdot rac{(\log r)^{\gamma}}{r^{\delta}}
ight\}.$$

Then there exist a quasiregular map g and constants $k_0>0,\ r_0>1$ and $R\geq 1$ such that

$$\left\{re^{i\varphi} : r > r_0, \, |\varphi| < k_0 \cdot \frac{(\log r)^{\gamma}}{r^{\delta}}\right\} \subset \{z \in \mathbb{C} : |g(z)| \ge R\}$$

Let $0 \le \delta \le \frac{1}{2}$. For $\delta = 0$ let $\gamma < 0$, for $\delta = \frac{1}{2}$ let $\gamma \ge 1$ and let $\gamma \in \mathbb{R}$ otherwise. Let k > 0 and

$${\mathcal G} := \left\{ r e^{i arphi} \ : \ r > 1, \ |arphi| < k \cdot rac{(\log r)^{\gamma}}{r^{\delta}}
ight\}.$$

Then there exist a quasiregular map g and constants $k_0>0,\ r_0>1$ and $R\geq 1$ such that

$$\left\{re^{i\varphi} : r > r_0, \, |\varphi| < k_0 \cdot \frac{(\log r)^{\gamma}}{r^{\delta}}\right\} \subset \{z \in \mathbb{C} : |g(z)| \ge R\} \subset G.$$

Let $0 \le \delta \le \frac{1}{2}$. For $\delta = 0$ let $\gamma < 0$, for $\delta = \frac{1}{2}$ let $\gamma \ge 1$ and let $\gamma \in \mathbb{R}$ otherwise. Let k > 0 and

$${\mathcal G} := \left\{ r e^{i arphi} \ : \ r > 1, \ |arphi| < k \cdot rac{(\log r)^{\gamma}}{r^{\delta}}
ight\}.$$

Then there exist a quasiregular map g and constants $k_0>0,\ r_0>1$ and $R\geq 1$ such that

$$\left\{re^{i\varphi} : r > r_0, \, |\varphi| < k_0 \cdot \frac{(\log r)^{\gamma}}{r^{\delta}}\right\} \subset \{z \in \mathbb{C} : |g(z)| \ge R\} \subset G.$$

Furthermore, there exists a quasiconformal map ϕ such that $f=g\circ \phi^{-1}$ is entire

Let $0 \le \delta \le \frac{1}{2}$. For $\delta = 0$ let $\gamma < 0$, for $\delta = \frac{1}{2}$ let $\gamma \ge 1$ and let $\gamma \in \mathbb{R}$ otherwise. Let k > 0 and

$${\mathcal G} := \left\{ r e^{i arphi} \ : \ r > 1, \ |arphi| < k \cdot rac{(\log r)^{\gamma}}{r^{\delta}}
ight\}.$$

Then there exist a quasiregular map g and constants $k_0>0,\ r_0>1$ and $R\geq 1$ such that

$$\left\{re^{i\varphi} : r > r_0, \, |\varphi| < k_0 \cdot \frac{(\log r)^{\gamma}}{r^{\delta}}\right\} \subset \{z \in \mathbb{C} : |g(z)| \ge R\} \subset G.$$

Furthermore, there exists a quasiconformal map ϕ such that $f=g\circ\phi^{-1}$ is entire, $f\in\mathcal{S}$

Let $0 \le \delta \le \frac{1}{2}$. For $\delta = 0$ let $\gamma < 0$, for $\delta = \frac{1}{2}$ let $\gamma \ge 1$ and let $\gamma \in \mathbb{R}$ otherwise. Let k > 0 and

$${\mathcal G} := \left\{ r e^{i arphi} \ : \ r > 1, \ |arphi| < k \cdot rac{(\log r)^{\gamma}}{r^{\delta}}
ight\}.$$

Then there exist a quasiregular map g and constants $k_0>0,\ r_0>1$ and $R\geq 1$ such that

$$\left\{re^{i\varphi} : r > r_0, \, |\varphi| < k_0 \cdot \frac{(\log r)^{\gamma}}{r^{\delta}}\right\} \subset \{z \in \mathbb{C} : |g(z)| \ge R\} \subset G.$$

Furthermore, there exists a quasiconformal map ϕ such that $f = g \circ \phi^{-1}$ is entire, $f \in S$ and ϕ is asymptotically conformal at infinity.

Let $0 \le \delta \le \frac{1}{2}$. For $\delta = 0$ let $\gamma < 0$, for $\delta = \frac{1}{2}$ let $\gamma \ge 1$ and let $\gamma \in \mathbb{R}$ otherwise. Let k > 0 and

$${\mathcal G} := \left\{ r e^{i arphi} \ : \ r > 1, \ |arphi| < k \cdot rac{(\log r)^{\gamma}}{r^{\delta}}
ight\}.$$

Then there exist a quasiregular map g and constants $k_0>0,\ r_0>1$ and $R\geq 1$ such that

$$\left\{re^{i\varphi} : r > r_0, \, |\varphi| < k_0 \cdot \frac{(\log r)^{\gamma}}{r^{\delta}}\right\} \subset \{z \in \mathbb{C} : |g(z)| \ge R\} \subset G.$$

Furthermore, there exists a quasiconformal map ϕ such that $f = g \circ \phi^{-1}$ is entire, $f \in S$ and ϕ is asymptotically conformal at infinity.

Remark

 ϕ asymptotically conformal: $\lim_{|z| \to \infty} rac{\phi(z)}{z} = c$ exists, $c
eq 0, \infty$

S. Albrecht (CAU Kiel)

Thank you very much for your attention.