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Definitions and preliminary results

Definition

Let U ⊂ C be open. A measurable function µ : U → C is called a
k-Beltrami coefficient of U if ‖µ‖∞ = k < 1.

Definition

Let U, V be open sets in C. A map φ : U → V is said to be quasiregular if
it has locally square integrable weak derivatives and the function

µφ(z) =
φz̄(z)

φz(z)

is a k-Beltrami coefficient. A quasiregular homeomorphism is called
quasiconformal.
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such that µφ = µ? (i.e. φz̄ = µ · φz , φ is a solution of the Beltrami
equation)

Answer:

Theorem (Measurable Riemann Mapping Theorem (MRMT))

Let µ : C → C be a k-Beltrami coefficient. Then there exists a unique
quasiconformal map φ : C → C such that φ(0) = 0, φ(1) = 1, µφ = µ.

Corollary

Let g : C → C be quasiregular. Then there exists a quasiconformal map φ

such that f := g ◦ φ−1 is holomorphic.
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Quasiconformal folding Examples

Quasiconformal folding is a technique to construct functions in class S
with good control of the singular values.

introduced by C. Bishop

first preprint in 2011

appeared in acta mathematica (214:1(2015) 1-60)

Bishop constructs among other examples

f ∈ S with arbitrary order of growth (originally due to S. Merenkov)
counterexamples in S for the area conjecture and the strong Eremenko
conjecture
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Quasiconformal folding Idea of quasiconformal folding

The idea behind quasiconformal folding is quite simple. Let f be a function
in class S with no asymptotic value and exactly two critical values (±1).

−1 1

f

τj

cosh

T

Ωj

Reverse this procedure!
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Quasiconformal folding Bounded geometry

Important for Bishop’s construction to work is the bounded geometry
condition on T .

Definition

We say that T has bounded geometry if:

The edges are C2 with uniform bounds.

The angles between adjacent edges are uniformly bounded away from
zero.

Adjacent edges have uniformly comparable lengths.

For non-adjacent edges e and f , diam(e)
dist(e,f ) is uniformly bounded.
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Quasiconformal folding Components of C \ T

Let T be an unbounded, locally finite, connected graph. Every component
of C \ T is one of the following:

R-component: unbounded components, which are mapped onto the
right half-plane, σ : Hr → C is essentially cosh

L-component: unbounded Jordan domains, which are mapped onto
the left half-plane, σ : Hl → C is just exp (these components assign
asymptotic values)

D-component: bounded Jordan domains (they assign other critical
values and higher order critical points). We will not use these.
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Quasiconformal folding Bishop’s theorem

Theorem (Bishop, only L- and R-components)

Suppose T is a bounded geometry tree and suppose τ is conformal from
each complementary component of T to its standard version (i.e.
left/right half-plane).
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Quasiconformal folding Bishop’s theorem

Theorem (Bishop, only L- and R-components)

Suppose T is a bounded geometry tree and suppose τ is conformal from
each complementary component of T to its standard version (i.e.
left/right half-plane). Assume that

L components only share edges with R components.

on L components τ maps edges to intervals of length 2π on ∂Hl with
endpoints in 2πiZ,

on R components the τ -sizes of all edges are ≥ 2π.

Then there is an entire function f and a quasiconformal map φ of the
plane so that f ◦ φ = σ ◦ τ off T (r0) (a neighbourhood of T). The only
singular values of f are ±1 (critical values coming from the vertices of T)
and the singular values assigned by the L components.
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Functions in class S with only one tract Idea
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such that ”G = {z ∈ C : |f (z)| > R}”?
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Functions in class S with only one tract Idea

Question

Given a simply connected, unbounded domain G , does there exist f ∈ S
such that ”G = {z ∈ C : |f (z)| > R}”?

Idea: Use qc-folding: G
∧
=R-component, C \ G

∧
=L-component, make ∂G

a bounded geometry tree

Problem

Not all domains G are possible.

Assumptions on G :

∂G sufficiently nice (see bounded geometry)

G symmetric with respect to R (to make the formulation easier)

width of tract ∼ length of edge (see bounded geometry)
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∼ log(n + 1)

∼ 2 log(n)
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∼ z 7→ 2z

⇒ the length of the n-th edge is ∼ n ⇒ width of G at Re = n2 must be n
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Furthermore, there exists a quasiconformal map φ such that f = g ◦ φ−1 is
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Remark

φ asymptotically conformal: lim|z |→∞
φ(z)

z
= c exists, c 6= 0, ∞
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The End

Thank you very much for your attention.
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