A polynomial endomorphism of \mathbb{C}^2 with a wandering Fatou component

M. Astorg ¹ X. Buff ¹ R. Dujardin ² H. Peters ³ J. Raissy ¹

¹Université de Toulouse ²Université Paris Est de Marne-la-Vallée ³Université d'Amsterdam

March 11, 2015

Plan

Introduction

2 Strategy of the construction

Parabolic implosion

Julia and Fatou sets

General setting

Let M be a complex manifold, and $f: M \to M$ a holomorphic map.

Definition

- The Fatou set is the largest open set on which the iterates $\{f^n, n \in \mathbb{N}\}$ form a normal family.
- The Julia set is the complement of the Fatou set.
- A connected component of the Fatou set is called a Fatou component.

Example : Julia and Fatou sets of $z \mapsto z^2 - 1$

No Wandering Domain Theorem of Sullivan

Theorem (Sullivan, 1985)

Let $f: \mathbb{P}^1 \to \mathbb{P}^1$ be a rational map of degree $d \geq 2$. Every Fatou component of f is preperiodic.

Consequence:

Together with the classification theorem, we get a complete description of the dynamics in the Fatou set.

More generally :

If $f: M \to M$ is holomorphic, and M is a complex manifold, must every Fatou component be preperiodic?

Answer:

- ullet $M=\mathbb{C}$ and f a transcendental map : no (Baker, 1976)
- $M = \mathbb{P}^1(\mathbb{C})$: yes (Sullivan, 1985)
- $M = \mathbb{C}$ and f transcendental with only finitely many singular values : yes (Eremenko-Lyubich 1992, Goldberg-Keen 1986)
- $M = \mathbb{C}^2$, f biholomorphic and transcendental : no (Fornaess-Sibony, 1998)
- ullet $M=\mathbb{C}$ and f transcendantal with bounded set of singular values : no (Bishop, 2012)
- $M = \mathbb{P}^2(\mathbb{C})$, f polynomial : no (A-Buff-Dujardin-Peters-Raissy, 2014).

A transcendantal example : $z \mapsto z - \sin(z) + 2\pi$

Main theorem

Theorem (A.-Buff-Dujardin-Peters-Raissy)

There exists a polynomial map $P:\mathbb{C}^2\to\mathbb{C}^2$ with a wandering Fatou component.

More precisely:

There exists polynomials f of the form $f(z) = z + z^2 + O(z^3)$ such that for any polynomial g of the form $g(w) = w - w^2 + O(w^3)$, the skew-product

$$P(z,w) = \left(f(z) + \frac{\pi^2}{4}w, g(w)\right)$$

has a wandering domain, that accumulates the complex line $\{w = 0\}$.

Sketch of the dynamics of $P(z, w) = (f(z) + \frac{\pi^2}{4}w, g(w))$

Projection of a wandering orbit on $\{w = 0\}$

Strategy of the construction (idea: M. Lyubich)

Property wanted for $P(z, w) = (f(z) + \frac{\pi^2}{4}w, g(w))$

We want to chose f so that there is a subsequence m_k and an open set U such that for all $(z,w)\in U$,

$$P^{m_k}(z,w) \rightarrow (\hat{z},0)$$

and $(\hat{z}, 0)$ is not preperiodic for P.

Proposition

If P satisfies that property, then P has a wandering domain.

Sketch

Sketch of the proof

Let U be a connected open set such that $\forall (z,w) \in U$, $P^{m_k}(z,w) \to (\hat{z},0)$ (*)

- ullet U is a subset of a Fatou component Ω_0
- ullet We have (*) on all of Ω_0 by analytic continuation
- If $\Omega_i=P^i(\Omega_0)$, then for all $(z,w)\in\Omega_i$, $P^{m_k}(z,w)$ converges to $(f^i(\hat{z}),0)$
- If $i \neq j$, we have $f^{i}(\hat{z}) \neq f^{j}(\hat{z})$
- Therefore if $i \neq j$, $\Omega_i \neq \Omega_j$ and so $(\Omega_n)_{n \in \mathbb{N}}$ is wandering.

Dynamics near $\{w = 0\}$

Notation

Let
$$f_w(z) = f(z) + \frac{\pi^2}{4}w$$
. Then :

$$P^{n}(z, w_{0}) = (f_{w_{n-1}} \circ \ldots \circ f_{w_{0}}(z), g^{n}(w_{0}))$$

with $w_k = g^k(w_0) \sim \frac{1}{k}$.

ldea

Understanding the dynamics of P near $\{w=0\}$ amounts to understanding the non-autonomous compositions $f_{w_n} \circ \ldots \circ f_{w_k}$, with $f_{w_i}(z) \simeq f(z)$

Fatou coordinates and Lavaurs map

Notations

- $f(z) = z + z^2 + O(z^3)$ has a parabolic fixed point at 0
- ullet \mathcal{B}_f is its parabolic basin
- ullet ϕ_f is the (normalized) attracting Fatou coordinate

$$\phi_f \circ f = \phi_f + 1$$

ullet ψ_f is the (normalized) repelling Fatou parametrization

$$f \circ \psi_f(Z) = \psi_f(Z+1)$$

• $L_f = \psi_f \circ \phi_f$ is the (phase 0) Lavaurs map

Lavaurs map

Parabolic implosion

Theorem (Lavaurs)

Let $\epsilon_k \to 0$ and $n_k \to +\infty$, such that $\frac{\pi}{\sqrt{\epsilon_k}} - n_k \to 0$. Then $(f + \epsilon_k)^{\circ n_k}$ converges to the Lavaurs map L_f uniformly on compacts of \mathcal{B}_f .

Consequence

With
$$\epsilon_k = \frac{\pi^2}{4} w_{k^2} \sim \frac{\pi^2}{4k^2}$$
 and $n_k = 2k$, the sequence $\underbrace{f_{w_{k^2}} \circ \ldots \circ f_{w_{k^2}}}_{2k}$

converges locally uniformly to L_f (with local uniformity in w as well).

Key proposition (A.-Buff-Dujardin-Peters-Raissy)

For all $w \in \mathcal{B}_g$, the sequence $\underbrace{f_{w_{(k+1)^2-1}} \circ \ldots \circ f_{w_{k^2}}}_{2k+1}$ converges locally

uniform L_f (with local uniformity in w as well).

Lavaurs's theorem

Precise statement

Theorem (A-Buff-Dujardin-Peters-Raissy, 2014)

Suppose $f(z) = z + z^2 + O(z^3)$ is such that L_f has an attracting fixed point. Let $g(w) = w - w^2 + O(w^3)$. Then

$$P(z,w) = \left(f(z) + \frac{\pi^2}{4}w, g(w)\right)$$

has a wandering domain.

Numerical example :

$$P(z, w) = (z + z^2 + 0.95z^3 + \frac{\pi^2}{4}w, w - w^2)$$

Red dots: attracting fixed points of L_f Grey part : points that do not escape under $\langle f, L_f \rangle$ (Julia-Lavaurs set of f)

Idea of the proof of the key proposition

Notation:
$$P^k(z, g^{n^2}(w)) = \left(z_k, g^{n^2+k}(w)\right)$$

The end

Thank you for your attention!