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Introduction History

Introduction

Definition (Wandering domain)

Let f be a rational or entire function. A Fatou component U is called wandering

domain if f n(U) ∩ f m(U) = ∅ for all m < n.
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Introduction History

Introduction

Definition (Wandering domain)

Let f be a rational or entire function. A Fatou component U is called wandering

domain if f n(U) ∩ f m(U) = ∅ for all m < n.

Theorem (Sullivan 1982)

There are no wandering domains for rational functions.
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First example of a wandering domain

The first example of a wandering domain is due to Baker. The function
considered was

f (z) = C · z2
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First example of a wandering domain

The first example of a wandering domain is due to Baker. The function
considered was

f (z) = C · z2
∞
∏

j=1

(
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,

where C > 0 is a small constant, r1 is large and (rn)n∈N is a sequence of positive
real numbers that satisfies the recurrence relation

rn+1 = C · r2n

n
∏

j=1

(

1 +
rn

rj

)

.

In 1963 Baker showed that f has multiply connected Fatou components Un with
f (Un) ⊂ Un+1, but the question whether the Un are all different remained open.
Those were the first known multiply connected Fatou components.
In 1976 Baker was able to show that the Un are all different and therefore
wandering domains.
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Introduction Shape of a multiply connected wandering domain

Bn−1 Bn Bn+1 Bn+2An An+1 An+2

Un−1 Un Un+1 Un+2

f (Bn) ⊂ Bn+1 (and therefore An+1 ⊂ f (An))

This implies that Bn belongs to a multiply connected Fatou component Un.

Assume that Un = Um for n 6= m, then this implies that Un = Um for all n,m.

Baker showed that there are no unbounded multiply connected Fatou
components.

Baker showed later that every multiply connected wandering domain has similar
properties like his first example.
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Introduction Motivation

Theorem (Baker and Dominguez 2000)

Let f be an entire function. If J (f ) is not connected, then it is not locally

connected at any point of J (f ).
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Introduction Motivation

Theorem (Baker and Dominguez 2000)

Let f be an entire function. If J (f ) is not connected, then it is not locally

connected at any point of J (f ).

This implies that J (f ) can not be locally connected at any point if f has a
multiply connected wandering domain.

Question

Are at least the different components of J (f ) locally connected?

Theorem (Bishop 2011)

There exists an entire function f with dimH J (f ) = 1.

Bishop showed that F(f ) consists of multiply connected wandering domains which
are bounded by recitifiable Jordan curves.

We want to show that under suitable conditions every boundary component of a
multiply connected wandering domain is a curve or even a Jordan curve and
therefore locally connected.
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Results

Definition (Inner and outer boundary)

Let U ⊂ C be a domain and let a ∈ C \ U . We denote by C (a,U) the component
of C \ U that contains a.
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of C \ U that contains a.
We call ∂∞U = ∂C (∞,U) the outer boundary component of U and for 0 /∈ U we
call ∂0U = ∂C (0,U) the inner boundary component of U .
We call ∂0U and ∂∞U big boundary components.
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Results Preparations for the results

Definition (Connectivity)

Let U ⊂ C be a domain. By c(U) we denote the connectivity of U , that is the
number of connected components of C \ U .
For a sequence of domains Un we call c the eventual connectivity of Un if
c(Un) = c for all large n.

U

c(U) = 6

Kisaka and Shishikura showed that the eventual connectivity of a multiply
connected wandering domain is either 2 or ∞.
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Let f be an entire function with a multiply connected wandering domain U = U0.

Denote Un = f n(U).
Then every Un contains an annulus Bn such that every compact subset K ⊂ Un is

mapped inside Bn+m under f m for all large m ∈ N.

Un Un+m

Bn Bn+m

Definition (Inner and outer connectivity)

We call c(Un ∩ C (0,Bn)) the inner connectivity and c(Un ∩ C (∞,Bn)) the outer

connectivity of Un.
We define the eventual inner and outer connectivity respectively.

BRS showed that the eventual inner and outer connectivity is also either 2 or ∞.
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Then all big boundary components are Jordan curves and ∂∞Un−1 = ∂0Un.
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be a boundary component of U . We call Z eventually big if f n(Z ) is a big
boundary component of Un for some n ∈ N.

Corollary 1

Let Z be an eventually big boundary component of U .
Then Z is a closed (rectifiable) curve. Moreover Z is a (rectifiable) Jordan curve
if f j(Z ) does not contain any critical points for all j ∈ N0.
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Let f be an entire function with a multiply connected wandering domain U .
The eventual inner connectivity of U is 2 if and only if every boundary component
of U is eventually big.

One direction of the lemma together with corollary 1 implies the following
corollary:

Corollary 2

Suppose that the eventual inner connectivity of Un is 2.
Then all wandering domains, which belong to the orbit of Un, are bounded by a
countable number of closed (rectifiable) curves.

We can apply Theorem 1 and both corollaries for Baker’s first example of a
wandering domain. This means that every multiply connected wandering domain
in Baker’s first example is bounded by a countable number of Jordan curves.
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k and γ∞
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Then we use that f −k is contracting to show that the curves γ0
k and γ∞

k converge
uniformly to the same curve γ with

trace(γ) =
⋂

k∈N

Γk .
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Proof Idea of the proof of theorem 1 and 2

By positioning of Cn to Un−1 and Un we have

∂∞Un−1 = trace(γ) = ∂0Un.
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Proof Idea of the proof of the lemma
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boundary component of U will be eventually mapped onto a big boundary
component.
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By the maximum and minimum modulus principle it is clear that big boundary
components are mapped onto big boundary components.
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Now we want to prove that if the eventual inner connectivity of U is 2 every
boundary component of U will be eventually mapped onto a big boundary
component.
By the maximum and minimum modulus principle it is clear that big boundary
components are mapped onto big boundary components.
Suppose Z is a boundary component of U which is not a big boundary component.

BnU Un

Z
f n(Z )

γ
f n(γ)

This proves the nedded direction of the lemma.

M. Baumgartner (University of Kiel) Boundaries of wandering domains London, 12 March 2015 18 / 22



Examples Bergweiler’s and Zheng’s example

Examples

In the following we are looking at three different classes of entire functions with
multiply connected wandering domains to which we can apply the theorems.
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Examples

In the following we are looking at three different classes of entire functions with
multiply connected wandering domains to which we can apply the theorems.

Bergweiler’s and Zheng’s example

f (z) = C · zk
∞
∏

n=1

(

1−
z

an

)

,

where C > 0, k ∈ N and (an)n∈N is a complex sequence with |an| = rn and
(rn)n∈N is a fast growing sequence of positive real numbers.
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multiply connected wandering domains to which we can apply the theorems.

Bergweiler’s and Zheng’s example

f (z) = C · zk
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∏

n=1

(
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an

)

,

where C > 0, k ∈ N and (an)n∈N is a complex sequence with |an| = rn and
(rn)n∈N is a fast growing sequence of positive real numbers.

The sequence (rn)n∈N can be chosen such that the conditions of theorem 1 hold.
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Examples

In the following we are looking at three different classes of entire functions with
multiply connected wandering domains to which we can apply the theorems.

Bergweiler’s and Zheng’s example

f (z) = C · zk
∞
∏

n=1

(

1−
z

an

)

,

where C > 0, k ∈ N and (an)n∈N is a complex sequence with |an| = rn and
(rn)n∈N is a fast growing sequence of positive real numbers.

The sequence (rn)n∈N can be chosen such that the conditions of theorem 1 hold.
This example includes the first example of Baker. In this case the eventual inner
connectivity is 2.
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Baker’s infinite connectivity example

f (z) = C ·
∞
∏

n=1

(

1 +
z

rn

)k

,

where C > 0, k ∈ N and (rn)n∈N is a fast growing sequence of positive real
numbers.
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Baker’s infinite connectivity example

f (z) = C ·
∞
∏

n=1

(

1 +
z

rn

)k

,

where C > 0, k ∈ N and (rn)n∈N is a fast growing sequence of positive real
numbers.

The sequence (rn)n∈N can be chosen such that the conditions of theorem 1 hold.
This example includes the first example of Baker (1984) with a wandering domain
with infinite connectivity. In this case the eventual inner connectivity is 2.
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Examples Baker’s infinite connectivity example

Baker’s infinite connectivity example

f (z) = C ·
∞
∏

n=1

(

1 +
z

rn

)k

,

where C > 0, k ∈ N and (rn)n∈N is a fast growing sequence of positive real
numbers.

The sequence (rn)n∈N can be chosen such that the conditions of theorem 1 hold.
This example includes the first example of Baker (1984) with a wandering domain
with infinite connectivity. In this case the eventual inner connectivity is 2.
Bergweiler and Zheng showed that Baker’s first example of a wandering domain
has also infinite connectivity.
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Examples Baker’s example of arbitrary order

Baker’s example of arbitrary order

f (z) = C ·
∞
∏

n=1

(

1 +

(

z

rn

)kn
)

,

where C > 0 and (rn)n∈N, (kn)n∈N are fast growing sequences of positive real
numbers.
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Baker’s example of arbitrary order

f (z) = C ·
∞
∏

n=1

(

1 +

(

z

rn

)kn
)

,

where C > 0 and (rn)n∈N, (kn)n∈N are fast growing sequences of positive real
numbers.

The sequence (rn)n∈N can be chosen such that the conditions of theorem 2 hold.
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Examples Baker’s example of arbitrary order

Baker’s example of arbitrary order

f (z) = C ·
∞
∏

n=1

(

1 +

(

z

rn

)kn
)

,

where C > 0 and (rn)n∈N, (kn)n∈N are fast growing sequences of positive real
numbers.

The sequence (rn)n∈N can be chosen such that the conditions of theorem 2 hold.
This example includes the first example of Baker (1984) with arbitrary order.
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Examples Baker’s example of arbitrary order

Baker’s example of arbitrary order

f (z) = C ·
∞
∏

n=1

(

1 +

(

z

rn

)kn
)

,

where C > 0 and (rn)n∈N, (kn)n∈N are fast growing sequences of positive real
numbers.

The sequence (rn)n∈N can be chosen such that the conditions of theorem 2 hold.
This example includes the first example of Baker (1984) with arbitrary order.
Bishop’s example which was the starting point of my work is also constructed by
an infinite product which is similar to the one above.
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The End

Thank you for your attention.
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