HOLOMORPHIC MOTION FOR JULIA SETS OF HOLOMORPHIC FAMILIES OF ENDOMORPHISMS OF \mathbb{P}^k

FABRIZIO BIANCHI

ABSTRACT. We build measurable holomorphic motions for Julia sets of holomorphic families of endomorphisms of \mathbb{P}^k under various equivalent notions of stability. This generalizes the wellknown result obtained by Mane-Sad-Sullivan and Lyubich in dimension 1 and leads to a coherent definition of the bifurcation locus in this setting. Since the usual 1-dimensional techniques no longer apply in higher dimension, our approach is based on ergodic and pluripotential methods. This is a joint work with François Berteloot.

1. The 1-dimensional theory

Let us consider a rational map f on the Riemann sphere \mathbb{P}^1 . It is possible to decompose \mathbb{P}^1 into two completely invariant subsets: the *Fatou set*, that is the open set of points having a neighbourhood there the family of the iterates $\{f^{\circ n}\}$ is normal, and its complement, the *Julia set*. This is where we find the chaotical dynamics. It is a classical result that such a system admits a unique measure of maximal entropy, usually denoted by μ , whose support is precisely the Julia set. Moreover, the Julia set coincides with the closure of the repelling periodic cycles \mathcal{R} for f. Let us now consider a holomorphic family of rational maps, defined in the following way.

Definition 1.1. A holomorphic family of rational maps is a holomorphic map $f : M \times \mathbb{P}^1 \to M \to \mathbb{P}^1$ of the form $f(\lambda, z) = (\lambda, f_{\lambda}(z))$, where M is a connected complex manifold and such that all maps $f_{\lambda} := f(\lambda, \cdot) : \mathbb{P}^1 \to \mathbb{P}^1$ are rational maps of the same degree $d \geq 2$.

The problem is the following: we want to study the dependence of the Julia set J_{λ} for f_{λ} on the parameter λ . Notice that, as recalled above, since $\overline{\mathcal{R}_{\lambda}} = J_{\lambda}$, it is natural to investigate how J_{λ} varies with λ through the parametrization of the repelling cycles.

In order to do this, we need the following definition.

Definition 1.2. Let E be a subset of the Riemann sphere and Ω be a complex manifold. Let $\lambda_0 \in \Omega$. A holomorphic motion of E over Ω and centered at λ_0 is a map

$$h: \Omega \times E \ni (\lambda, z) \mapsto h_{\lambda}(z) \in \mathbb{P}^{1}$$

which satisfies the following properties:

i) $h_{\lambda_0} = Id|_E$

- ii) $E \ni z \mapsto h_{\lambda}(z)$ is one-to-one for every $\lambda \in \Omega$
- iii) $\Omega \ni \lambda \mapsto h_{\lambda}(z)$ is holomorphic for every $z \in E$.

Notice in particular that a holomorphic motion gives a lamination on a subset of the product space $M \times \mathbb{P}^1$. Moreover, let $z_0 \dots f_{\lambda_0}^{n-1}(z_0)$ be an *n*-repelling cycle for f_{λ_0} . By the implicit function theorem, there exists a holomorphic motion of this cycle on a neighbourhood Ω_{λ_0} that conjugates the dynamics $(f_{\lambda} \circ h_{\lambda} = h_{\lambda} \circ f_{\lambda_0})$.

FABRIZIO BIANCHI

The interest of holomorphic motions (in dimension 1) relies on the fact that any holomorphic motion of a set E extends to the closure of E. This is the content of the so-called λ -lemma and is a quite simple consequence of Picard-Montel theorem:

Lemma 1.3 (λ -lemma, Mané-Sad-Sullivan). A holomorphic motion h of E extends to a holomorphic motion \bar{h} of \bar{E} (and moreover \bar{h} is continuous).

As J_{λ} is the closure of the set of repelling cycles of f_{λ} , this Lemma implies that the Julia set J_{λ_0} moves holomorphically over a neighbourhood V_{λ_0} of λ_0 in M as soon as *all* repelling cycles of f_{λ_0} move holomorphically on V_{λ_0} . Moreover, the holomorphic motion obtained in this way clearly conjugates the dynamics. This is the content of the following fundamental Theorem.

Theorem 1.4 (Lyubich, Mané-Sad-Sullivan). Let $f: M \times \mathbb{P}^1 \to M \times \mathbb{P}^1$ be a holomorphic family of rational maps. If \mathcal{R}_{λ} moves holomorphically on Ω , then J_{λ} moves holomorphically on Ω (and the motion conjugates the dynamics).

We can thus define the set of stable parameters and its complement, the bifurcation locus.

Definition 1.5. The stable set $S_{tab} \subset M$ is the set of points in M that have a neighbourhood where \mathcal{R}_{λ} (and thus J_{λ}) moves holomorphically. Its complement $\mathcal{B}_{if} = S_{tab}^c$ is the bifurcation locus.

By definition, S_{tab} is an open subset of M but it is however not yet clear that it is not empty. It turns out that S_{tab} is actually dense in M.

Theorem 1.6 (Lyubich, Manè-Sad-Sullivan). The stable set S_{tab} is dense in M.

In order to complete the picture in dimension 1 we need a last definition.

Definition 1.7. The Lyapounov exponent of the system $(J_{\lambda}, f_{\lambda}, \mu_{\lambda})$ is

$$L(\lambda) = \int_{\mathbb{P}^1} \ln |f'_\lambda| d\mu_\lambda.$$

The following theorem by DeMarco gives a fundamental characterization of the bifurcation locus.

Theorem 1.8 (DeMarco). dd^cL is a positive closed current on M and $\mathcal{B}_{if} \equiv \operatorname{Supp} dd^cL$.

So, we have the following description.

Theorem 1.9 (Lyubich, Mané-Sad-Sullivan, DeMarco). Let $f: M \times \mathbb{P}^1 \to M \times \mathbb{P}^1$ be a holomorphic family of rational maps. Then, the following are equivalent:

- (1) the repelling cycles move holomorphically;
- (2) the Julia set J_{λ} move holomorphically;
- (3) $dd^{c}L = 0.$

The aim of this work is to generalize this statement in higher dimension, thus giving a coherent definition of the bifurcation locus in this more general setting.

2. The higher-dimensional situation

Let us now move to the general setting. Let M be connected complex manifold of dimension m. A holomorphic family of endomorphisms of \mathbb{P}^k can be seen as a holomorphic mapping

 $f: M \times \mathbb{P}^k \to M \times \mathbb{P}^k$, $(\lambda, z) \mapsto (\lambda, f_\lambda(z))$

where the algebraic degree d of f_{λ} is larger than or equal to 2 and does not depend on λ . For instance, M can be the space $\mathcal{H}_d(\mathbb{P}^k)$ of all degree d holomorphic endomorphisms of \mathbb{P}^k , which is a Zariski open subset in some \mathbb{P}^N .

It is no longer true that the support of μ contains all the repelling periodic point (Hubbard-Papadopol- Fornaess-Sibony). So, we give the following definition.

Definition 2.1. The set of *J*-repelling cycles $\mathcal{R}_{\lambda}^{J} := \mathcal{R}_{\lambda} \cap J_{\lambda}$ is the set of repelling cycles in J_{λ} .

The following Theorem by Briend-Duval assures that $\mathcal{R}^{J}_{\lambda}$ still provides a dense subset of J_{λ} .

Theorem 2.2 (Briend-Duval). J_{λ} is the closure of $\mathcal{R}^{J}_{\lambda}$.

Before stating and commenting our result, we sketch the steps of the proof in dimension 1 (1 \Rightarrow 2). We have a point $z \in J_{\lambda_0}$ and we want to extend the holomorphic motion h on the repelling cycle to it. We can approximate z with repelling points by the density of \mathcal{R} in J, and then consider any limit of the motions ρ_i of this repelling points as the motion for z, since the family of the ρ_j 's is normal (this is actually true even when k > 1). Then, since the ρ_j 's have disjoint graphs, Hurwitz Lemma implies that every possible sequence of these motions has the same limit, thus giving the uniqueness for the motion of z.

When k > 1, the limits might be not unique and one is therefore led to consider webs instead of laminations. In order to give a precise definition of this, the following framework has been introduced by Berteloot and Dupont. The map f induces a dynamical system $(\mathcal{J}, \mathcal{F})$ where

 $\mathcal{J} := \{\gamma : M \to \mathbb{P}^k : \text{such that } \gamma \text{ is holomorphic and } \gamma(\lambda) \in J_\lambda \text{ for all } \lambda \in M \}$ $\mathcal{F}(\gamma)(\lambda) := (f_{\lambda} \circ \gamma)(\lambda) \forall \lambda \in M$ Let us denote by $p_{\lambda} : \mathcal{J} \to \mathbb{P}^k$ the evaluation $p_{\lambda}(\gamma) := \gamma(\lambda)$.

Definition 2.3. A structural web of f is a probability measure \mathcal{M} with compact support on \mathcal{J} such that

- (1) $\mathcal{F}_{\star}(\mathcal{M}) = \mathcal{M}$
- (2) $p_{\lambda\star}(\mathcal{M}) = \mu_{\lambda}$ for every $\lambda \in M$.

The picture we have to have in mind in order to handle with these objects is the following: we have a set of graphs that a priori can intersect, and what the second condition says is that what we see when we slice at any parameter λ is the equilibrium measure μ_{λ} .

The strategy is thus the following: to find \mathcal{M} and $\mathcal{S} \subset \mathcal{J}$ such that

$$\begin{cases} \mathcal{M}(\mathcal{S}) = 1\\ \forall \gamma \neq \gamma' \in \mathcal{S}, \gamma \cap \gamma' = \emptyset \end{cases}$$

In order to state our result we need a last definition.

Definition 2.4. Let $f: M \times \mathbb{P}^k \to M \times \mathbb{P}^k$ be a holomorphic family of endomorphisms of \mathbb{P}^k of degree $d \geq 2$. A measurable holomorphic motion of the Julia sets J_{λ} over M is a subset \mathcal{L} of \mathcal{J} such that

(1) $\mathcal{F}(\mathcal{L}) = \mathcal{L}$

(2) $\Gamma_{\gamma} \cap \Gamma_{\gamma'} = \emptyset$ for every distinct $\gamma, \gamma' \in \mathcal{L}$

(3) Γ_{γ} does not meet the grand orbit of the critical set of f for every $\gamma \in \mathcal{L}$

(4) $\mu_{\lambda}{\gamma(\lambda)}: \gamma \in \mathcal{L}} = 1 \text{ for every } \lambda \in M$

(5) the map $\mathcal{F}: \mathcal{L} \to \mathcal{L}$ is d^k -to-1.

FABRIZIO BIANCHI

Theorem 2.5 (Berteloot, B.). Let $f: M \times \mathbb{P}^k \to M \times \mathbb{P}^k$ be a holomorphic family of endomorphisms of \mathbb{P}^k of degree $d \geq 2$, with M is a simply connected complex manifold. If the J-repelling cycles of f move holomorphically over M there exists a measurable holomorphic motion \mathcal{L} of the Julia sets J_{λ} over M.

When M is a simply connected open subset of the space $\mathcal{H}_d(\mathbb{P}^k)$ of endomorphisms of \mathbb{P}^k of degree $d \geq 2$, we may combine this result with some results of Berteloot-Dupont and get the following theorem.

Theorem 2.6 (Berteloot, B., Dupont). Let $f : M \times \mathbb{P}^k \to M \times \mathbb{P}^k$ be a holomorphic family of endomorphisms where M is a simply connected open subset of the space $\mathcal{H}_d(\mathbb{P}^k)$ of endomorphisms of \mathbb{P}^k of degree $d \geq 2$. Then the following assertions are equivalent :

- (A) \mathcal{R}^J_{λ} moves holomorphically
- (B) there exists a measurable holomorphic motion \mathcal{L} of the Julia sets J_{λ} over M.
- (C) $dd^{c}L \equiv 0$ on M (here $L(\lambda) = \int_{\mathbb{R}^{k}} \ln |Df_{\lambda}| d\mu_{\lambda}$)

References

- [BeDp] F. Berteloot, C. Dupont, Dynamical stability and Lyapunov exponents for holomorphic endomorphisms of \mathbb{P}^k , arxiv preprint arXiv:1403.7603, 2014.
- [Ber] F. Berteloot, Bifurcation currents in holomorphic families of rational maps, Lecture Notes in Mathematics 2075 CIME Fundation subseries (2013) Springer Verlag, 1-93.
- [BrDv1] J.-Y. Briend, J. Duval, Exposants de Liapounoff et distribution des points périodiques d'un endomorphisme de P^k, Acta Math., 182 (1999), no. 2, 143-157.
- [BrDv2] J.-Y. Briend, J. Duval, Deux caractérisations de la mesure d'équilibre d'un endomorphisme de ℙ^k, Publ. Math. Inst. Hautes Études Sci., 93 (2001), 145-159, and erratum in 109 (2009), 295-296.
- [deM] L. DeMarco, Dynamics of rational maps: Lyapunov exponents, bifurcations, and capacity, Math. Ann., 326 (2003), no. 1, 43-73.
- [FS] J.E. Fornaess, N. Sibony, Dynamics of P² (examples), Laminations and foliations in dynamics, geometry and topology (Stony Brook, NY, 1998), Contemp. Math., 269 (2001), 47-85.
- [HP] J.H. Hubbard, P. Papadopol, Superattractive fixed points in \mathbb{C}^n , Indiana Univ. Math. J., **43** (1994), no. 1, 321-365.
- [Ly1] M. Lyubich, Some typical properties of the dynamics of rational mappings, Russian Math. Surveys, 38 (1983), no. 5, 154-155.
- [Ly2] M. Lyubich, Investigation of the stability of the dynamics of rational functions, Teor. Funktsii Funktsional. Anal. i Prilozhen., 42 (1984), 72-91. Translated in Selecta Mathematica Sovietica, 9 (1990), no. 1, 69-90.
- [MSS] R. Mañé, P. Sad, D. Sullivan, On the dynamics of rational maps, Ann. Sci. Ecole Norm. Sup. (4) 16 (1983), no. 2, 193-217.