The eventual hyperbolic dimension of entire functions Joint work with Lasse Rempe-Gillen

Alexandre De Zotti

University of Liverpool

Postgraduate Conference in Complex Dynamics 11 March 2014

• Let *f* be a transcendental entire function. We want to study its dynamics.

- Let *f* be a transcendental entire function. We want to study its dynamics.
- \bullet For polynomial maps, there is a basin of attraction at $\infty.$

- Let *f* be a transcendental entire function. We want to study its dynamics.
- For polynomial maps, there is a basin of attraction at ∞ .
- In the case of transcendental entire functions this set is replaced by an escaping set:

$$I(f) = \{z : f^{\circ n}(z) \to \infty \text{ as } n \to \infty\}.$$

- Let *f* be a transcendental entire function. We want to study its dynamics.
- For polynomial maps, there is a basin of attraction at ∞ .
- In the case of transcendental entire functions this set is replaced by an escaping set:
 I(f) = {z : f^{on}(z) → ∞ as n → ∞}.
- The radial Julia set seems to support the information on the measurable dynamics.

- Let *f* be a transcendental entire function. We want to study its dynamics.
- For polynomial maps, there is a basin of attraction at ∞ .
- In the case of transcendental entire functions this set is replaced by an escaping set:
 I(f) = {z : f^{on}(z) → ∞ as n → ∞}.
- The radial Julia set seems to support the information on the measurable dynamics.
- Can we talk about hyperbolic dynamics near ∞ ?

• The radial Julia set J_{rad} is the set of non uniform hyperbolicity.

- The radial Julia set J_{rad} is the set of non uniform hyperbolicity.
- A hyperbolic set is a compact foward-invariant set X on which f is uniformly expanding.

- The radial Julia set J_{rad} is the set of non uniform hyperbolicity.
- A hyperbolic set is a compact foward-invariant set X on which f is uniformly expanding.

Definition (Hyperbolic dimension)

hypdim $f = \sup_X HD X$,

where the sup is taken over all hyperbolic set X for f.

- The radial Julia set J_{rad} is the set of non uniform hyperbolicity.
- A hyperbolic set is a compact foward-invariant set X on which f is uniformly expanding.

Definition (Hyperbolic dimension)

hypdim $f = \sup_X HD X$,

where the sup is taken over all hyperbolic set X for f.

Theorem (Przytycki, Rempe-Gillen)

Let f be an entire function, then

hypdim $f = HD J_{rad}(f)$.

Alexandre De Zotti The eventual hyperbolic dimension of entire functions

Let f be a transcendetal entire function. The **escaping set** of f is the set:

$$I(f) = \{z : f^{\circ n}(z) \to \infty\}.$$

Let f be a transcendetal entire function. The **escaping set** of f is the set:

$$I(f) = \{z: f^{\circ n}(z) \to \infty\}.$$

Example

Let $(E_{\lambda})_{\lambda \in \mathbb{C}^*}$ be the family of exponential maps $E_{\lambda}(z) = \lambda e^z$. Then for some parameters λ ,

Let f be a transcendetal entire function. The **escaping set** of f is the set:

$$I(f) = \{z: f^{\circ n}(z) \to \infty\}.$$

Example

Let $(E_{\lambda})_{\lambda \in \mathbb{C}^*}$ be the family of exponential maps $E_{\lambda}(z) = \lambda e^z$. Then for some parameters λ ,

• $\overline{I(E_{\lambda})} = J(E_{\lambda})$ (Eremenko, Lyubich),

Let f be a transcendetal entire function. The **escaping set** of f is the set:

$$I(f) = \{z: f^{\circ n}(z) \to \infty\}.$$

Example

Let $(E_{\lambda})_{\lambda \in \mathbb{C}^*}$ be the family of exponential maps $E_{\lambda}(z) = \lambda e^z$. Then for some parameters λ ,

- $\overline{I(E_{\lambda})} = J(E_{\lambda})$ (Eremenko, Lyubich),
- $HD(I(E_{\lambda})) = 2$ (McMullen),

Let f be a transcendetal entire function. The **escaping set** of f is the set:

$$I(f) = \{z: f^{\circ n}(z) \to \infty\}.$$

Example

Let $(E_{\lambda})_{\lambda \in \mathbb{C}^*}$ be the family of exponential maps $E_{\lambda}(z) = \lambda e^z$. Then for some parameters λ ,

- $\overline{I(E_{\lambda})} = J(E_{\lambda})$ (Eremenko, Lyubich),
- $HD(I(E_{\lambda})) = 2$ (McMullen),
- $HD(J_{rad}(E_{\lambda})) < 2$ (Urbański, Zdunik).

• For rational maps, the critical orbits "explains" the "whole dynamics".

- For rational maps, the critical orbits "explains" the "whole dynamics".
- For transcendental maps, we have to add the asymptotic values.

Definition

- For rational maps, the critical orbits "explains" the "whole dynamics".
- For transcendental maps, we have to add the asymptotic values.

Definition

Let f an entire function,

 A critical value of f, is the image of a critical point, CritVal(f) = f({z : f'(z) = 0}),

- For rational maps, the critical orbits "explains" the "whole dynamics".
- For transcendental maps, we have to add the asymptotic values.

Definition

- A critical value of f, is the image of a critical point, CritVal $(f) = f(\{z : f'(z) = 0\}),$
- An asymptotic value is a a ∈ C for which ∃γ : [0,∞[→ C continuous, such that γ(t) → ∞ as t → ∞ while f(γ(t)) → a, Asymp(f) = {a : a is an asymptotic value },

- For rational maps, the critical orbits "explains" the "whole dynamics".
- For transcendental maps, we have to add the asymptotic values.

Definition

- A critical value of f, is the image of a critical point, CritVal $(f) = f(\{z : f'(z) = 0\}),$
- An asymptotic value is a a ∈ C for which ∃γ : [0,∞[→ C continuous, such that γ(t) → ∞ as t → ∞ while f(γ(t)) → a, Asymp(f) = {a : a is an asymptotic value },
- The singular set of f, $S(f) = \overline{\text{CritVal}(f) \cup \text{Asymp}(f)}$,

- For rational maps, the critical orbits "explains" the "whole dynamics".
- For transcendental maps, we have to add the asymptotic values.

Definition

- A critical value of f, is the image of a critical point, CritVal $(f) = f(\{z : f'(z) = 0\})$,
- An asymptotic value is a a ∈ C for which ∃γ : [0,∞[→ C continuous, such that γ(t) → ∞ as t → ∞ while f(γ(t)) → a, Asymp(f) = {a : a is an asymptotic value },
- The singular set of f, $S(f) = \overline{\text{CritVal}(f) \cup \text{Asymp}(f)}$,
- The postsingular set, $PS(f) = \bigcup_{n>0} f^{\circ n}(S(f))$.

Definition

An entire function f is said to belong to the Eremenko-Lyubich class \mathcal{B} (or simply class \mathcal{B}), and we write $f \in \mathcal{B}$, if its singular set is bounded.

Definition

An entire function f is said to belong to the Eremenko-Lyubich class \mathcal{B} (or simply class \mathcal{B}), and we write $f \in \mathcal{B}$, if its singular set is bounded.

 \bullet For class ${\cal B}$ maps, the singular set do not accumulates on the essential singularity.

Definition

An entire function f is said to belong to the Eremenko-Lyubich class \mathcal{B} (or simply class \mathcal{B}), and we write $f \in \mathcal{B}$, if its singular set is bounded.

- For class \mathcal{B} maps, the singular set do not accumulates on the essential singularity.
- An appropriate definition of hyperbolicity requires to be in \mathcal{B} .
- One can use the logarithmic change of coordinate to study class \mathcal{B} functions.

Let f, g be entire functions. And let C be a class of maps such as "affine", "conformal", "quasiconformal"...

Let f, g be entire functions. And let C be a class of maps such as "affine", "conformal", "quasiconformal"... The maps f and g are said to be C-ly equivalent if there exists homeomorphisms $\varphi, \psi : \mathbb{C} \to \mathbb{C}$ in class C such that

$$f\circ\varphi=\psi\circ g.$$

Invariance of escaping dimensions in affine classes

Theorem (Rempe-Gillen, Stallard)

If $f,g \in \mathcal{B}$ are affinely equivalent, then

 $\mathsf{HD}\,I(f)=\mathsf{HD}\,I(g).$

Invariance of escaping dimensions in affine classes

Theorem (Rempe-Gillen, Stallard)

If $f,g \in \mathcal{B}$ are affinely equivalent, then

 $\mathsf{HD}\,I(f)=\mathsf{HD}\,I(g).$

Theorem (Rempe-Gillen, Stallard)

If $f,g \in \mathcal{B}$ are affinely equivalent, then

 $\operatorname{edim} f = \operatorname{edim} g$,

where edim $f = \lim_{R \to \infty} HD\{z \in J : \forall n \ge 0, |f^{\circ n}(z)| \ge R\}$ is called the eventual dimension.

Invariance of escaping dimensions in affine classes

Theorem (Rempe-Gillen, Stallard)

If $f,g \in \mathcal{B}$ are affinely equivalent, then

 $\mathsf{HD}\,I(f)=\mathsf{HD}\,I(g).$

Theorem (Rempe-Gillen, Stallard)

If $f,g \in \mathcal{B}$ are affinely equivalent, then

 $\operatorname{edim} f = \operatorname{edim} g$,

where edim $f = \lim_{R \to \infty} HD\{z \in J : \forall n \ge 0, |f^{\circ n}(z)| \ge R\}$ is called the eventual dimension.

Is it true for quasiconformal equivalence?

• Both theorem are proved by using the quasiconformal rigidity principle of class \mathcal{B} functions.

- Both theorem are proved by using the quasiconformal rigidity principle of class \mathcal{B} functions.
- This principle is the extension to transcendental functions of the impossibility to distinguish two polynomials of the same degree by their dynamics near ∞ .

Let f, g be entire functions. They are **quasiconformally** equivalent near infinity if there exist quasiconformal maps ψ and $\varphi : \mathbb{C} \to \mathbb{C}$, such that $\varphi \circ f(z) = g \circ \psi(z)$ whenever |f(z)| and $|g(\psi(z))|$ are large enough.

Let f, g be entire functions. They are **quasiconformally** equivalent near infinity if there exist quasiconformal maps ψ and $\varphi : \mathbb{C} \to \mathbb{C}$, such that $\varphi \circ f(z) = g \circ \psi(z)$ whenever |f(z)| and $|g(\psi(z))|$ are large enough.

Theorem (Rempe-Gillen)

Let $f, g \in \mathcal{B}$ be quasiconformally equivalent near infinity, then there is a $R \ge 0$, such that they are conjugated on $J_R = \{z : \forall n, |f^{\circ n}(z)| \ge R\}$ by a quasiconformal map of \mathbb{C} .

Let f, g be entire functions. They are **quasiconformally** equivalent near infinity if there exist quasiconformal maps ψ and $\varphi : \mathbb{C} \to \mathbb{C}$, such that $\varphi \circ f(z) = g \circ \psi(z)$ whenever |f(z)| and $|g(\psi(z))|$ are large enough.

Theorem (Rempe-Gillen)

Let $f, g \in \mathcal{B}$ be quasiconformally equivalent near infinity, then there is a $R \ge 0$, such that they are conjugated on $J_R = \{z : \forall n, |f^{\circ n}(z)| \ge R\}$ by a quasiconformal map of \mathbb{C} . When the quasiconformal classes depend analytically on a parameter λ , the conjugacy also depends analytically on λ .

The eventual hyperbolic dimension

Definition

Let f be a transcendental entire function, the **eventual** hyperbolic dimension of f is defined as:

evhypdim $f = \limsup_{R \to \infty} \{ \text{HD} X : X \subset \{ |z| > R \} \text{ is hyperbolic for } f \}$

Definition

Let f be a transcendental entire function, the **eventual hyperbolic dimension** of f is defined as:

evhypdim $f = \limsup_{R \to \infty} \{ \text{HD} X : X \subset \{ |z| > R \} \text{ is hyperbolic for } f \}$

Indeed evhypdim $f = \lim_{R \to \infty} HD\{z \in J \setminus I : \forall n \ge 0, |f^{\circ n}(z)| \ge R\}.$

Definition

Let f be a transcendental entire function, the **eventual hyperbolic dimension** of f is defined as:

evhypdim $f = \limsup_{R \to \infty} \{ \text{HD} X : X \subset \{ |z| > R \} \text{ is hyperbolic for } f \}$

Indeed evhypdim $f = \lim_{R \to \infty} HD\{z \in J \setminus I : \forall n \ge 0, |f^{\circ n}(z)| \ge R\}.$

Proposition

The eventual hyperbolic dimension is invariant in affine equivalence classes of class $\mathcal B$ functions.

Definition

Let f be a transcendental entire function, the **eventual hyperbolic dimension** of f is defined as:

evhypdim $f = \limsup_{R \to \infty} \{ \text{HD} X : X \subset \{ |z| > R \} \text{ is hyperbolic for } f \}$

Indeed evhypdim $f = \lim_{R \to \infty} HD\{z \in J \setminus I : \forall n \ge 0, |f^{\circ n}(z)| \ge R\}.$

Proposition

The eventual hyperbolic dimension is invariant in affine equivalence classes of class $\mathcal B$ functions.

This is also a consequence of the rigidity principle:

Definition

Let f be a transcendental entire function, the **eventual** hyperbolic dimension of f is defined as:

evhypdim $f = \limsup_{R \to \infty} \{ \text{HD} X : X \subset \{ |z| > R \} \text{ is hyperbolic for } f \}$

Indeed evhypdim $f = \lim_{R \to \infty} \text{HD}\{z \in J \setminus I : \forall n \ge 0, |f^{\circ n}(z)| \ge R\}.$

Proposition

The eventual hyperbolic dimension is invariant in affine equivalence classes of class $\mathcal B$ functions.

This is also a consequence of the rigidity principle:

• Affine equivalence classes yields analytic families of quasiconformally equivalent maps.

Definition

Let f be a transcendental entire function, the **eventual** hyperbolic dimension of f is defined as:

evhypdim $f = \limsup_{R \to \infty} \{ \text{HD} X : X \subset \{ |z| > R \} \text{ is hyperbolic for } f \}$

Indeed evhypdim $f = \lim_{R \to \infty} HD\{z \in J \setminus I : \forall n \ge 0, |f^{\circ n}(z)| \ge R\}.$

Proposition

The eventual hyperbolic dimension is invariant in affine equivalence classes of class $\mathcal B$ functions.

This is also a consequence of the rigidity principle:

- Affine equivalence classes yields analytic families of quasiconformally equivalent maps.
- The semiconjugacy relates hyperbolic sets of f and g close to ∞ with arbitrary small dilatation.

• Let $f : \mathbb{C} \to \mathbb{C}$ be holomorphic.

- Let $f : \mathbb{C} \to \mathbb{C}$ be holomorphic.
- A Poincaré function L is the lineariser of a repelling periodic point of f, that is, L : C → C is holomorphic and satisfies the Schröder equation:

- Let $f : \mathbb{C} \to \mathbb{C}$ be holomorphic.
- A Poincaré function L is the lineariser of a repelling periodic point of f, that is, L : C → C is holomorphic and satisfies the Schröder equation:

$$\begin{array}{ccc} \mathbb{C} & \xrightarrow{w \mapsto \rho w} & \mathbb{C} \\ L \downarrow & & \downarrow L \\ \mathbb{C} & \xrightarrow{f^{\circ p}} & \mathbb{C} \end{array}$$

where p is the period and ρ the multiplier, and L sends 0 on one of the points of the periodic cycle.

- Let $f : \mathbb{C} \to \mathbb{C}$ be holomorphic.
- A Poincaré function L is the lineariser of a repelling periodic point of f, that is, L : C → C is holomorphic and satisfies the Schröder equation:

$$\begin{array}{ccc} \mathbb{C} & \stackrel{W \mapsto \rho W}{\longrightarrow} & \mathbb{C} \\ L \downarrow & & \downarrow L \\ \mathbb{C} & \stackrel{f \circ p}{\longrightarrow} & \mathbb{C} \end{array}$$

where p is the period and ρ the multiplier, and L sends 0 on one of the points of the periodic cycle.

• We choose the unique Poincaré function such that L'(0) = 1.

Example

Let $f(z) = z^d$, with $d \ge 2$. Then the normalised Poincaré function associated to the fixed point z = 1 is $L(z) = e^z$.

Example

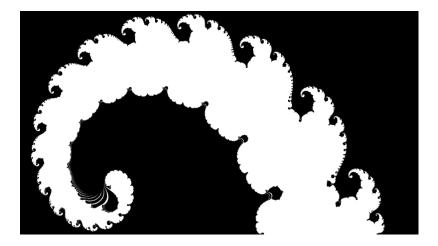
Let $f(z) = z^d$, with $d \ge 2$. Then the normalised Poincaré function associated to the fixed point z = 1 is $L(z) = e^z$.

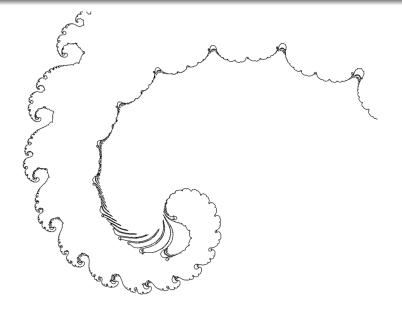
• The singular set of a Poincaré function *L* for a repelling fixed point of an entire function *f* is the postsingular set of *f*.

Example

Let $f(z) = z^d$, with $d \ge 2$. Then the normalised Poincaré function associated to the fixed point z = 1 is $L(z) = e^z$.

- The singular set of a Poincaré function *L* for a repelling fixed point of an entire function *f* is the postsingular set of *f*.
- In particular, if the map f is hyperbolic, the function L belongs to the class B.





Theorem

Let P be a hyperbolic polynomial with connected Julia set, consider a repelling fixed point of P and let L be the Poincaré function of that fixed point. Then,

evhypdim L = HD J(P),

where J(P) is the Julia set of P.

Theorem

Let P be a hyperbolic polynomial with connected Julia set, consider a repelling fixed point of P and let L be the Poincaré function of that fixed point. Then,

evhypdim L = HD J(P),

where J(P) is the Julia set of P.

Remark

All previously known examples have evhypdim(f) = 1.

Theorem

Let P be a hyperbolic polynomial with connected Julia set, consider a repelling fixed point of P and let L be the Poincaré function of that fixed point. Then,

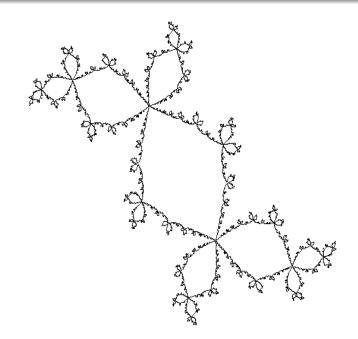
evhypdim L = HD J(P),

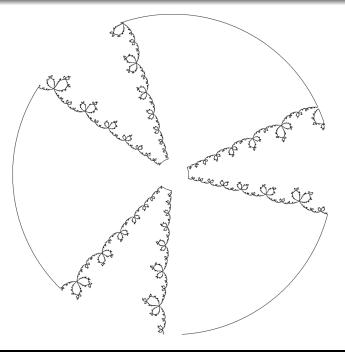
where J(P) is the Julia set of P.

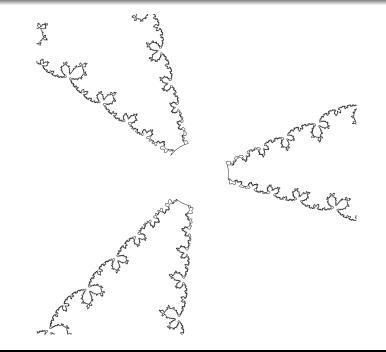
Remark

All previously known examples have evhypdim(f) = 1.

Proof uses thermodynamics formalism and transfer of properties from the *P*-dynamical plane to the *L*-dynamical plane by the semiconjugacy.







~ 66880 ~

Lemma

Let f_1 and f_2 be entire functions which are quasiconformally conjugated.

Lemma

Let f_1 and f_2 be entire functions which are quasiconformally conjugated. Let L be the Poincaré function of a repelling fixed point of f_1 .

Lemma

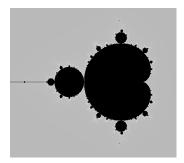
Let f_1 and f_2 be entire functions which are quasiconformally conjugated. Let L be the Poincaré function of a repelling fixed point of f_1 .

Then L is quasiconformally conjugated to the Poincaré function of the corresponding repelling fixed point for f_2 .

Lemma

Let f_1 and f_2 be entire functions which are quasiconformally conjugated. Let L be the Poincaré function of a repelling fixed point of f_1 .

Then L is quasiconformally conjugated to the Poincaré function of the corresponding repelling fixed point for f_2 .



• The Mandelbrot set contains family of hyperbolic polynomial maps which are quasiconformally conjugated.

- The Mandelbrot set contains family of hyperbolic polynomial maps which are quasiconformally conjugated.
- In particular, it is known that the Hausdorff dimension of the Julia set in the main component of the Mandelbrot set is not constant.

- The Mandelbrot set contains family of hyperbolic polynomial maps which are quasiconformally conjugated.
- In particular, it is known that the Hausdorff dimension of the Julia set in the main component of the Mandelbrot set is not constant.

Corollary

The eventual hyperbolic dimension is not invariant by quasiconformal conjugacy.

- The Mandelbrot set contains family of hyperbolic polynomial maps which are quasiconformally conjugated.
- In particular, it is known that the Hausdorff dimension of the Julia set in the main component of the Mandelbrot set is not constant.

Corollary

The eventual hyperbolic dimension is not invariant by quasiconformal conjugacy.

Question

What about the eventual dimension? The dimension of the escaping set?

THANK YOU !

Alexandre De Zotti The eventual hyperbolic dimension of entire functions