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Transcendental dynamics

Let f be a transcendental entire function. We want to study
its dynamics.

For polynomial maps, there is a basin of attraction at ∞.

In the case of transcendental entire functions this set is
replaced by an escaping set:
I (f ) = {z : f ◦n(z)→∞ as n→∞}.
The radial Julia set seems to support the information on the
measurable dynamics.

Can we talk about hyperbolic dynamics near ∞?
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The hyperbolic dimension

The radial Julia set Jrad is the set of non uniform
hyperbolicity.

A hyperbolic set is a compact foward-invariant set X on which
f is uniformly expanding.

Definition (Hyperbolic dimension)

hypdim f = sup
X

HDX ,

where the sup is taken over all hyperbolic set X for f .

Theorem (Przytycki, Rempe-Gillen)

Let f be an entire function, then

hypdim f = HD Jrad(f ).
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The escaping set

Definition

Let f be a transcendetal entire function. The escaping set of f is
the set:

I (f ) = {z : f ◦n(z)→∞}.

Example

Let (Eλ)λ∈C∗ be the family of exponential maps Eλ(z) = λez .
Then for some parameters λ,

I (Eλ) = J(Eλ) (Eremenko, Lyubich),

HD(I (Eλ)) = 2 (McMullen),

HD(Jrad(Eλ)) < 2 (Urbański, Zdunik).
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The Eremenko-Lyubich class (1)

For rational maps, the critical orbits “explains” the “whole
dynamics”.

For transcendental maps, we have to add the asymptotic
values.

Definition

Let f an entire function,

A critical value of f , is the image of a critical point,
CritVal(f ) = f ({z : f ′(z) = 0}),

An asymptotic value is a a ∈ C for which ∃γ : [0,∞[→ C
continuous, such that γ(t)→∞ as t →∞ while
f (γ(t))→ a, Asymp(f ) = {a : a is an asymptotic value },
The singular set of f , S(f ) = CritVal(f ) ∪ Asymp(f ),

The postsingular set, PS(f ) =
⋃
n≥0

f ◦n(S(f )).
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The Eremenko-Lyubich class (2)

The singular set is the smallest closed set S for which
f : C\f −1(S)→ C\S is a covering map.

Definition

An entire function f is said to belong to the Eremenko-Lyubich
class B (or simply class B), and we write f ∈ B, if its singular set
is bounded.

For class B maps, the singular set do not accumulates on the
essential singularity.

An appropriate definition of hyperbolicity requires to be in B.

One can use the logarithmic change of coordinate to study
class B functions.
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Equivalence of maps

Definition

Let f , g be entire functions. And let C be a class of maps such as
“affine”, “conformal”, “quasiconformal”...

The maps f and g are said to be C -ly equivalent if there exists
homeomorphisms ϕ,ψ : C→ C in class C such that

f ◦ ϕ = ψ ◦ g .
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Invariance of escaping dimensions in affine classes

Theorem (Rempe-Gillen, Stallard)

If f , g ∈ B are affinely equivalent, then

HD I (f ) = HD I (g).

Theorem (Rempe-Gillen, Stallard)

If f , g ∈ B are affinely equivalent, then

edim f = edim g ,

where edim f = lim
R→∞

HD{z ∈ J : ∀n ≥ 0, |f ◦n(z)| ≥ R} is called

the eventual dimension.

Is it true for quasiconformal equivalence?
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Rigidity of the escaping dynamics (1)

Both theorem are proved by using the quasiconformal rigidity
principle of class B functions.

This principle is the extension to transcendental functions of
the impossiblity to distinguish two polynomials of the same
degree by their dynamics near ∞.
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Rigidity of the escaping dynamics (2)

Definition

Let f , g be entire functions. They are quasiconformally
equivalent near infinity if there exist quasiconformal maps ψ and
ϕ : C→ C, such that ϕ ◦ f (z) = g ◦ ψ(z) whenever |f (z)| and
|g(ψ(z))| are large enough.

Theorem (Rempe-Gillen)

Let f , g ∈ B be quasiconformally equivalent near infinity, then
there is a R ≥ 0, such that they are conjugated on
JR = {z : ∀n, |f ◦n(z)| ≥ R} by a quasiconformal map of C. When
the quasiconformal classes depend analytically on a parameter λ,
the conjugacy also depends analytically on λ.
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The eventual hyperbolic dimension

Definition

Let f be a transcendental entire function, the eventual
hyperbolic dimension of f is defined as:

evhypdim f = lim sup
R→∞

{HDX : X ⊂ {|z | > R} is hyperbolic for f }

Indeed evhypdim f = lim
R→∞

HD{z ∈ J\I : ∀n ≥ 0, |f ◦n(z)| ≥ R}.

Proposition

The eventual hyperbolic dimension is invariant in affine equivalence
classes of class B functions.

This is also a consequence of the rigidity principle:

Affine equivalence classes yields analytic families of
quasiconformally equivalent maps.
The semiconjugacy relates hyperbolic sets of f and g close to
∞ with arbitrary small dilatation.
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Poincaré functions (1)

Let f : C→ C be holomorphic.

A Poincaré function L is the lineariser of a repelling periodic
point of f , that is, L : C→ C is holomorphic and satisfies the
Schröder equation:

C
w 7→ρw−→ C

L ↓ ↓ L
C −→

f ◦p
C

where p is the period and ρ the multiplier, and L sends 0 on
one of the points of the periodic cycle.

We choose the unique Poincaré function such that L′(0) = 1.
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Poincaré functions (2)

Example

Let f (z) = zd , with d ≥ 2. Then the normalised Poincaré function
associated to the fixed point z = 1 is L(z) = ez .

The singular set of a Poincaré function L for a repelling fixed
point of an entire function f is the postsingular set of f .

In particular, if the map f is hyperbolic, the function L
belongs to the class B.
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The eventual hyperbolic dimension of Poincaré functions

Theorem

Let P be a hyperbolic polynomial with connected Julia set,
consider a repelling fixed point of P and let L be the Poincaré
function of that fixed point. Then,

evhypdim L = HD J(P),

where J(P) is the Julia set of P.

Remark

All previously known examples have evhypdim(f ) = 1.

Proof uses thermodynamics formalism and transfer of properties
from the P-dynamical plane to the L-dynamical plane by the
semiconjugacy.
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Non invariance of the eventual hyperbolic dimension (1)

Lemma

Let f1 and f2 be entire functions which are quasiconformally
conjugated.

Let L be the Poincaré function of a repelling fixed
point of f1.
Then L is quasiconformally conjugated to the Poincaré function of
the corresponding repelling fixed point for f2.
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Non invariance of the eventual hyperbolic dimension (2)

The Mandelbrot set contains family of hyperbolic polynomial
maps which are quasiconformally conjugated.

In particular, it is known that the Hausdorff dimension of the
Julia set in the main component of the Mandelbrot set is not
constant.

Corollary

The eventual hyperbolic dimension is not invariant by
quasiconformal conjugacy.

Question

What about the eventual dimension? The dimension of the
escaping set?

Alexandre De Zotti The eventual hyperbolic dimension of entire functions



Non invariance of the eventual hyperbolic dimension (2)

The Mandelbrot set contains family of hyperbolic polynomial
maps which are quasiconformally conjugated.

In particular, it is known that the Hausdorff dimension of the
Julia set in the main component of the Mandelbrot set is not
constant.

Corollary

The eventual hyperbolic dimension is not invariant by
quasiconformal conjugacy.

Question

What about the eventual dimension? The dimension of the
escaping set?

Alexandre De Zotti The eventual hyperbolic dimension of entire functions



Non invariance of the eventual hyperbolic dimension (2)

The Mandelbrot set contains family of hyperbolic polynomial
maps which are quasiconformally conjugated.

In particular, it is known that the Hausdorff dimension of the
Julia set in the main component of the Mandelbrot set is not
constant.

Corollary

The eventual hyperbolic dimension is not invariant by
quasiconformal conjugacy.

Question

What about the eventual dimension? The dimension of the
escaping set?

Alexandre De Zotti The eventual hyperbolic dimension of entire functions



Non invariance of the eventual hyperbolic dimension (2)

The Mandelbrot set contains family of hyperbolic polynomial
maps which are quasiconformally conjugated.

In particular, it is known that the Hausdorff dimension of the
Julia set in the main component of the Mandelbrot set is not
constant.

Corollary

The eventual hyperbolic dimension is not invariant by
quasiconformal conjugacy.

Question

What about the eventual dimension? The dimension of the
escaping set?

Alexandre De Zotti The eventual hyperbolic dimension of entire functions



THANK YOU !
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