A Newhouse phenomenon in transcendental dynamics

Adam Epstein (with Lasse Rempe-Gillen)

Warwick University

Adam Epstein (Warwick University) A Newhouse phenomenon in transcendental c Lo

Attractors

We will consider entire maps $f : \mathbb{C} \to \mathbb{C}$ as dynamical systems.

Recall that a period *p* cycle $\langle \zeta \rangle$ is said to be *attracting, indifferent* or *repelling* according as the *multiplier* $(f^p)'(\zeta)$ is less than, equal to, or greater than 1. The multiplier is 0 precisely when the cycle contains a critical point : such a cycle is said to be *superattracting*.

- A polynomial *f* : C → C has only finitely many attractors [Fatou]. In fact, a polynomial of degree *D* has at most *D* − 1.
- A transcendental *f* : C → C may have infinitely many attractors.
 For example, *z* → *z* − sin *z* has infinitely many superattractors.

Singular Values

For entire $f : \mathbb{C} \to \mathbb{C}$, we denote by :

- $\Gamma(f)$ the set $\{z : f'(z) = 0\}$ of all *critical points*,
- *C*(*f*) the set *f*(Γ(*f*)) of all *critical values*,
- *A*(*f*) is the set of all finite *asymptotic values* (limits along paths tending to infinity),
- S(f) the set of all finite values which are *singular* in the sense of covering space theory : $S(f) = \overline{C(f) \cup A(f)}$.
- Π(f) the set of finite values which are attained only finitely often.
 By Picard's Theorem, #Π(f) ≤ 1 for any entire transcendental f.

Finite and Bounded type maps

We say that $f : \mathbb{C} \to \mathbb{C}$ is of

- *finite type* if *S*(*f*) is finite,
- bounded type if *S*(*f*) is bounded.

Both conditions are preserved under composition, hence by iteration, since $S(f \circ g) = \overline{g(S(f))} \cup S(g)$ for any entire maps *f* and *g*.

Theorem (Eremenko-Lyubich)

A finite type transcendental $f : \mathbb{C} \to \mathbb{C}$ has only finitely many attractors. In fact, at most #S(f) many.

Question (Mihaljević-Brandt)

What about bounded type transcendental maps?

3

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Results

Theorem

There exists a bounded type entire map with infinitely many attractors.

In fact, bounded type entire maps with infinitely many attractors are prevalent in suitable families. The following is analogous to the *Newhouse phenomenon* of higher dimensional dynamics :

Theorem

Let $f : \mathbb{C} \to \mathbb{C}$ be an entire map such that the interior of the closure of the critical value set contains a repelling fixed point. There exist a neighborhood of 0 and a residual subset \mathfrak{R} such that for any $\beta \in \mathfrak{R}$ the map $f + \beta$ has infinitely many attractors.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Bifurcation

For entire $f : \mathbb{C} \to \mathbb{C}$, we denote by E(f) the set of all $z \in \mathbb{C}$ with finite backward orbit $\bigcup_{k=0}^{\infty} f^{-k}(z)$.

- There is at most one point in *E*(*f*). Indeed, if *f* is transcendental than *E*(*f*) ⊆ Π(*f*), by Picard's Theorem.
- The backward orbit of any other point accumulates everywhere on the Julia set of *f*.

A D b 4 A b

Bifurcation

Proposition

Let $\lambda \mapsto f_{\lambda}$ be an analytic family of entire maps parametrized by a connected open neighborhood Λ of 0 in \mathbb{C} , and let $\lambda \mapsto \chi_{\lambda}$ and $\lambda \mapsto \zeta_{\lambda}$ be analytic functions defined on Λ . Assume that :

- for every $\lambda \in \Lambda$, the point ζ_{λ} is a repelling fixed point of f_{λ} ,
- for every $\lambda \in \Lambda$, the point χ_{λ} is a critical point of f_{λ} ,
- the function $\lambda \mapsto \zeta_{\lambda} f_{\lambda}(\chi_{\lambda})$ vanishes at 0 but not identically,
- $\chi_0 \notin E(f_0)$.

Then for any sufficiently large positive integer p, there exists $\mu \in \Lambda$ such that χ_{μ} has period p under f_{μ} .

3

Deformation

Theorem

Let f be an entire map with repelling fixed point ζ , let $D \ni \zeta$ be a disc with $\overline{D} \cap S(f) \subseteq \{\zeta\}$, and let \mathcal{K} be the set of all connected components of $f^{-1}(D)$. Consider the set \mathfrak{B} of all functions $V \mapsto \mathbf{b}_V$ from $\Upsilon = \{V \in \mathcal{K} : d_V > 1\}$ to D whose image is bounded in D. Note that \mathfrak{B} is an open neighborhood of the origin in the Banach space $\ell^{\infty}(\Upsilon)$. There exists an analytic family $\mathbf{b} \mapsto f_{\mathbf{b}}$ such that for any $\mathbf{b} \in \mathfrak{B}$:

- $f_{\mathbf{b}} \circ \psi^{-1}$ agrees with f outside $f^{-1}(D)$,
- $f_{\mathbf{b}}$ restricts to a cover $\psi(V \setminus f^{-1}(0)) \to D \setminus \{\mathbf{b}_V\}$ for each $V \in \Upsilon$.

Moreover, the family $\mathbf{b} \mapsto f_{\mathbf{b}}$ has the following properties :

•
$$C(f_{\mathsf{b}}) = \{\mathsf{b}_V : d_V < \infty\} \cup (C(f) \setminus \{\zeta\}),$$

- $A(f_{\mathbf{b}}) = \{\mathbf{b}_V : d_V = \infty\} \cup (A(f) \setminus \{\zeta\}),$
- $\Pi(f) = \emptyset$ implies $\Pi(f_{\mathbf{b}}) = \emptyset$.

Order

Recall that the order of f is

$$\rho(f) = \limsup_{R \to \infty} \frac{\log_+ \sup_{|z|=R} |f(z)|}{\log R}$$

where $\log_{+} R = \max(0, \log R)$.

By the Ahlfors Distortion Theorem,

- $\rho(f) \ge \frac{1}{2}$ for any bounded type transcendental map,
- $\rho(f) \ge 1$ for any finite type map with $A(f) \ne \emptyset$,
- if ρ(f) < ∞ then f is of bounded type precisely when C(f) is bounded.

< 日 > < 同 > < 回 > < 回 > < □ > <

Order

For the family $\mathbf{b} \mapsto f_{\mathbf{b}}$, we have

$$\rho(f_{\mathsf{b}}) = \rho(f)$$

provided that :

• { $V : |\mathbf{b}_V| > \epsilon$ } is finite for every $\epsilon > 0$ and $\mathbf{b}_V = 0$ whenever $d_V = \infty$,

or

• if f has the Area Property :

$$\int_{f^{-1}(K)\setminus\mathbb{D}}\frac{\mathrm{d}x\,\mathrm{d}y}{|z|^2}<\infty$$

for every compact set $K \subset \mathbb{C} \setminus S(f)$.

10/12

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lemma

Consider the entire map $\mathfrak{f}:\mathbb{C}\to\mathbb{C}$ given by

$$\mathfrak{f}(z) = \left(\sin \frac{\pi}{2}\sqrt{z}\right)^2 = \frac{1 - \cos \pi \sqrt{z}}{2}$$

- f has a repelling fixed point at 0 with multiplier $\frac{\pi^2}{4}$.
- [*f*) = {*n*² : *n* ∈ ℤ} \ {0} consists of simple critical points. The corresponding critical values f(*n*²) are 1 for odd *n* and 0 for even *n*. Moreover, f⁻¹(1) ⊂ Γ(*f*) and f⁻¹(0) \ {0} ⊂ Γ(*f*).

$$A(f) = \varnothing.$$

- I is a map of finite type.

$$\ \circ \ \ \rho(\mathfrak{f}) = \frac{1}{2}.$$

The map has the Area Property.

Theorem

There exists a bounded type entire map g with infinitely many attractors, and such that

- $\rho(g) = \frac{1}{2}$,
- $A(g) = \varnothing$,
- C(g) has a unique accumulation point, or the closure of C(g) has nonempty interior [whichever is desired].

モトイモト

12/12