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Introduction

• Quasiregular functions on Rd generalize analytic functions on C.

• We aim to prove iterative results for quasiregular maps analogous
to complex dynamics.

• Today we’ll first introduce quasiregular maps and then do some
dynamics.



Quasiregular mappings
• Informally, a continuous sense-preserving map f : Rd → Rd is

called quasiregular (qr) if it maps infinitesimal spheres to
infinitesimal ellipsoids of bounded eccentricity (i.e. the ratio
major axis/minor axis is bounded).

• Quasiregular = quasiconformal without injectivity condition.

• For K ≥ 1, we say that f is K -quasiregular if the amount of local
stretching is ≤ K everywhere.

• Examples: (x , y) 7→ (Kx , y) is K -qr,
for K ∈ N, the map reiθ 7→ reiKθ is K -qr,
analytic functions on C are 1-qr.

• A composition of qr maps is itself qr.
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Properties of quasiregular maps
Why are qr maps on Rd a good generalization of entire functions on C?

Theorem (Reshetnyak, 1967-68)
Non-constant quasiregular maps are discrete and open.

Rickman proved a Picard theorem for quasiregular maps:

Theorem (Rickman, 1980)
For d ≥ 2 and K ≥ 1 there exists a constant C = C(d ,K ) with the
following property:
every K -qr map f : Rd → Rd that omits C values must be constant.

This value C = C(d ,K ) is called Rickman’s constant.
(Picard’s theorem says C(2,1) = 2.)
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Montel’s theorem on normal families

Let σ denote the spherical metric on C or Rd . Recall:

Theorem (Montel)
Let F be a family of analytic functions on a domain D ⊂ C.
Suppose ∃ε > 0 such that

(i) each f ∈ F omits 2 values a1(f ),a2(f ) ∈ C,
(ii) σ(a1(f ),a2(f )) ≥ ε and σ(ai(f ),∞) ≥ ε.

Then F is a normal family.

Miniowitz used Rickman’s theorem to prove a quasiregular version...



Theorem (Miniowitz, 1982)

Let F be a family of K -qr maps on a domain D ⊂ Rd and let
C = C(d ,K ) be Rickman’s constant. Suppose ∃ε > 0 such that

(i) each f ∈ F omits C values a1(f ), . . .aC(f ) ∈ Rd ,
(ii) σ(ai(f ),aj(f )) ≥ ε and σ(ai(f ),∞) ≥ ε.

Then F is a normal family.

• Note this requires a family of maps all K -qr with the same K .

• In general, if f is K -qr, then the iterate f n is only K n-qr.
So Miniowitz–Montel cannot be applied to the family {f n}!

• We can still make use of Miniowitz–Montel by applying it instead
to a family of rescalings. For example, if f is K -qr, then{

x 7→ f (rx)
s

: r > 0, s > 0
}

is a family of K -qr maps.
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Polynomial type vs transcendental type

Definition
A qr map f is said to be of polynomial type if lim

x→∞
|f (x)| =∞.

Otherwise, this limit does not exist and f is transcendental type.

Denote the maximum modulus by

M(r , f ) = M(r) := max
|x |=r

|f (x)|.

Lemma (Bergweiler, 2006)
Let f be quasiregular of transcendental type and let A > 1. Then

lim
r→∞

M(Ar , f )
M(r , f )

=∞.



Polynomial type vs transcendental type

Definition
A qr map f is said to be of polynomial type if lim

x→∞
|f (x)| =∞.

Otherwise, this limit does not exist and f is transcendental type.

Denote the maximum modulus by

M(r , f ) = M(r) := max
|x |=r

|f (x)|.

Lemma (Bergweiler, 2006)
Let f be quasiregular of transcendental type and let A > 1. Then

lim
r→∞

M(Ar , f )
M(r , f )

=∞.



Dynamics — Escape from C
For a function f : Rd → Rd , we consider the escaping set

I(f ) = {x ∈ Rd : f n(x)→∞}.

Theorem (Eremenko, 1989)
If f : C→ C is transcendental entire, then I(f ) 6= ∅.

How fast can orbits escape to∞?

• The iterated max modulus provides an upper bound:

if |x | ≤ R, then |f n(x)| ≤ Mn(R).

• But points |x | > R can go faster — Eremenko’s method gives:

Theorem (Bergweiler, Hinkkanen, 1999)
Let f be trans entire and R > 0. Then there exists z ∈ C such that

|f n(z)| ≥ Mn(R) for all n.
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Fast escape for quasiregular maps

Theorem (Bergweiler, Fletcher, Drasin, 2014)

Let f be trans type qr and R > 0. Then there exists x ∈ Rd such that

|f n(x)| ≥ Mn(R) for all n.

This theorem follows from the next covering lemma by pulling back.
We use the notation A(r , s) = {x ∈ Rd : r < |x | < s}.

Lemma (BFD)
Let f be trans type qr. For all large r , there exists S ≥ M(r , f ) such that

f (A(r ,4r)) ⊃ A(S,4S).

We’ll see how to prove this lemma using normal families.
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Let f be trans type qr and let C be Rickman’s constant.

Claim: For all large r , the image f (A(r ,4r)) contains

A(42pM(2r),42p+1M(2r)) for some p ∈ {0,1, . . . ,C − 1}.

To prove this claim, we consider the family of rescalings{
gr (x) =

f (rx)
M(2r , f )

: r > 0
}
.

• If the claim fails, ∃rk →∞ such that on A(1,4) each rescaled
function grk omits at least one point in each of the C annuli

A(1,4), A(42,43), . . . , A(42(C−1),42(C−1)+1).

• Then Miniowitz–Montel =⇒ {grk} is a normal family on A(1,4).
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gr (x) =
f (rx)

M(2r , f )

On the other hand, the family {grk} cannot be normal on A(1,4)
because:

M(3,grk ) =
M(3rk , f )
M(2rk , f )

→∞ as rk →∞;

but also,

for |x | ≤ 2, we have |grk (x)| =
|f (rkx)|

M(2rk , f )
≤ 1.

This proves the claim (and so the qr fast escape theorem).



Slow escape

There are always points that escape arbitrarily slowly. The following
was first proved for trans entire functions on C by Rippon and Stallard.

Theorem (N.)

Let f : Rd → Rd be quasiregular of trans type.
Take a positive sequence an →∞ (however slowly).
Then there exists x ∈ I(f ) such that |f n(x)| ≤ an for all large n.

The entire and qr cases use covering lemmas in similar ways, but the
proofs are quite different.

An unexpected corollary of part of the new qr proof is the next result,
which is new even for entire fns and is (kind of) ‘fast’ ...
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Question For a general f , can we find points with modulus ≈ R that
escape to infinity at a rate ≈ Mn(R, f )?

Theorem (N.)
Let f be quasiregular of trans type.
For all large R > 0, there exists x ∈ Rd with R

2 ≤ |x | ≤ 2R and

lim
n→∞

|f n(x)|
Mn(R)

= 1.

The key to the proof is a covering result where the image of a set
“of scale r ” covers one “of scale M(r)”.
To do this, we next introduce some sets with a particular shape.
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Fix K , d and let C = C(d ,K ).

Introduce sets ...

Q1, . . . ,Q2C .

Nowhere do 3 of these overlap.

For r > 0, let

Qj(r) := rQj .

Q-lemma (N.)

If f is K -quasiregular on Rd of trans type, then for all large r and each j ,

f (Qj(r)) ⊃ Qp(M(r)) for some p ∈ {1, . . . ,2C}.
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Q-lemma =⇒ controlled rate of escape

Repeatedly using the Q-lemma gives a sequence of Q-sets where the
image of each one under f covers the next:

Q1(R)
image covers−→ Qj1(M(R))

image covers−→ Qj2(M
2(R)) −→ Qj3(M

3(R)) −→ . . .

Now a pullback argument gives a point x ∈ Q1(R) such that
f n(x) ∈ Qjn(M

n(R)) for all n, i.e.

R
2
≤ |x | ≤ 2R and

1
2
≤ |f

n(x)|
Mn(R)

≤ 2.

To get |f n(x)| ∼ Mn(R) we need to work a little harder (squeeze the
Q-sets into thinner annuli).
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Q-lemma (N.)

If f is K -quasiregular on Rd of trans type, then for all large r and each j ,

f (Qj(r)) ⊃ Qp(M(r)) for some p ∈ {1, . . . ,2C}.

To prove the Q-lemma, consider the rescaled family{
hr (x) =

f (rx)
M(r , f )

: r > 0
}
.

If the Q-lemma fails, then for some j and some rk →∞
• the image f (Qj(rk )) omits a point in Qp(M(rk )), for every p,

• rescaling, hrk (Qj) omits a point in each of Q1, . . . ,Q2C ,
• then Miniowitz–Montel =⇒ {hrk} is normal on Qj .

(Note that, although the Q-sets overlap, we’ve taken 2C of them to be
sure of finding C well-spaced omitted values.)
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But {hrk} cannot be a normal family on Qj because

• for |x | ≤ 1, we have |hr (x)| =
|f (rx)|
M(r , f )

≤ 1,

• Qj contains a max mod point x with |x | = A > 1 at which

|hr (x)| =
M(Ar , f )
M(r , f )

→∞ as r →∞.

This proves the Q-lemma.


