Connectedness properties of the set where the iterates of an entire function are unbounded

John Osborne

(joint work with Phil Rippon and Gwyneth Stallard)

Postgraduate Conference in Complex Dynamics 11 - 13 March 2015

- *f* an entire function, $f^n = f \circ f \circ \ldots \circ f$
- $(f^n(z))_{n \in \mathbb{N}}$ the *orbit* of *z* under *f*
- *K*(*f*) = set of points whose orbits are *bounded*
- So $K(f)^c$ = set of points whose orbits are *unbounded*

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- *f* an entire function, $f^n = f \circ f \circ \ldots \circ f$
- $(f^n(z))_{n \in \mathbb{N}}$ the *orbit* of *z* under *f*
- *K*(*f*) = set of points whose orbits are *bounded*
- So $K(f)^c$ = set of points whose orbits are *unbounded*

• $K(f)^c \supset I(f)$

- *f* an entire function, $f^n = f \circ f \circ \ldots \circ f$
- $(f^n(z))_{n \in \mathbb{N}}$ the *orbit* of *z* under *f*
- *K*(*f*) = set of points whose orbits are *bounded*
- So $K(f)^c$ = set of points whose orbits are *unbounded*
- $K(f)^c \supset I(f)$

f a polynomial

- K(f) = filled Julia set
- $K(f)^c = I(f) \subset F(f)$

f transcendental

- K(f) unbounded
- $K(f)^{c} \setminus I(f) \neq \emptyset$

- *f* an entire function, $f^n = f \circ f \circ \ldots \circ f$
- $(f^n(z))_{n\in\mathbb{N}}$ the *orbit* of *z* under *f*
- *K*(*f*) = set of points whose orbits are *bounded*
- So K(f)^c = set of points whose orbits are unbounded
- $K(f)^c \supset I(f)$

f a polynomial

- K(f) = filled Julia set
- $K(f)^c = I(f) \subset F(f)$
- $K(f)^c$ is connected

f transcendental

- K(f) unbounded
- $K(f)^{c} \setminus I(f) \neq \emptyset$
- When is $K(f)^c$ connected?

Define

•
$$m(r) = m(r, f) := \min\{|f(z)| : |z| = r\}$$

• $m^n(r)$ to be the *n*th iterate of the function $r \mapsto m(r)$.



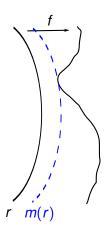
Define

•
$$m(r) = m(r, f) := \min\{|f(z)| : |z| = r\}$$

• $m^n(r)$ to be the *n*th iterate of the function $r \mapsto m(r)$.

・ロト ・四ト ・ヨト ・ヨト

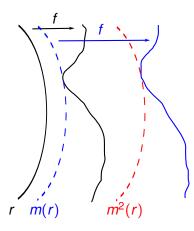
æ



Define

•
$$m(r) = m(r, f) := \min\{|f(z)| : |z| = r\}$$

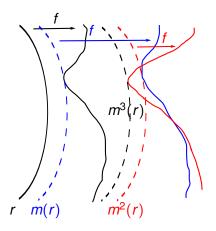
• $m^n(r)$ to be the *n*th iterate of the function $r \mapsto m(r)$.



Define

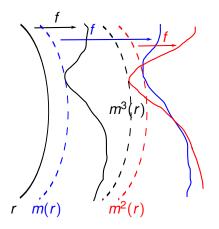
•
$$m(r) = m(r, f) := \min\{|f(z)| : |z| = r\}$$

• $m^n(r)$ to be the *n*th iterate of the function $r \mapsto m(r)$.



Define

- $m(r) = m(r, f) := \min\{|f(z)| : |z| = r\}$
- $m^n(r)$ to be the *n*th iterate of the function $r \mapsto m(r)$.



For a transcendental entire function (compare the iteration of M(r)):

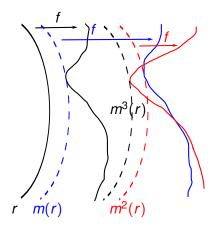
• $\nexists R > 0$ with $m(r) > r \forall r \ge R$

(日)

э

Define

- $m(r) = m(r, f) := \min\{|f(z)| : |z| = r\}$
- $m^n(r)$ to be the *n*th iterate of the function $r \mapsto m(r)$.



For a transcendental entire function (compare the iteration of M(r)):

- $\nexists R > 0$ with $m(r) > r \forall r \ge R$
- we can't always find r > 0 such that $m^n(r) \to \infty$ as $n \to \infty$.

э

Some functions for which $K(f)^c$ is connected

Theorem A

Let *f* be a transcendental entire function for which there exists r > 0 such that $m^n(r) \to \infty$ as $n \to \infty$. Then $K(f)^c$ is connected.

Some functions for which $K(f)^c$ is connected

Theorem A

Let *f* be a transcendental entire function for which there exists r > 0 such that $m^n(r) \to \infty$ as $n \to \infty$. Then $K(f)^c$ is connected.

Theorem B

Let f be a transcendental entire function of order less than $\frac{1}{2}$. Then there exists r > 0 such that $m^n(r) \to \infty$ as $n \to \infty$, and therefore $K(f)^c$ is connected.

Recall that the *order* ρ of a transcendental entire function is defined as

$$\rho := \limsup_{r \to \infty} \frac{\log \log M(r, f)}{\log r}.$$

人口 医水疗 医医水白 医水白 医小白

Suppose $K(f)^c$ is disconnected.

Lemma

A subset X of \mathbb{C} is disconnected if and only if there exists a closed, connected set $\Gamma \subset X^c$ such that at least two different components of Γ^c intersect X.

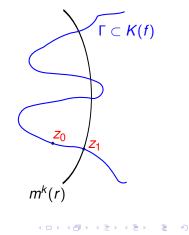
・ロト ・ 厚 ト ・ ヨ ト ・

э

Suppose $K(f)^c$ is disconnected.

Lemma

A subset X of \mathbb{C} is disconnected if and only if there exists a closed, connected set $\Gamma \subset X^c$ such that at least two different components of Γ^c intersect X.



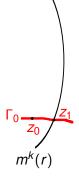
Suppose we have a continuum $\Gamma_0 \subset K(f)$ such that

• for some $z_0 \in \Gamma_0$, $|f^n(z_0)| < m^k(r)$ for all $n \in \mathbb{N}$, and

・ロト ・ 厚 ト ・ ヨ ト ・

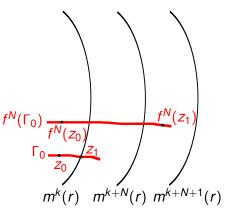
э

• $\exists z_1 \in \Gamma_0 \cap \{z : |z| = m^k(r)\}.$



Suppose we have a continuum $\Gamma_0 \subset K(f)$ such that

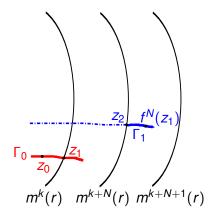
- for some $z_0 \in \Gamma_0$, $|f^n(z_0)| < m^k(r)$ for all $n \in \mathbb{N}$, and
- $\exists z_1 \in \Gamma_0 \cap \{z : |z| = m^k(r)\}.$



 $N \ge 1$ is the largest integer such that $|f^N(z_1)| \ge m^{k+N}(r)$.

Suppose we have a continuum $\Gamma_0 \subset K(f)$ such that

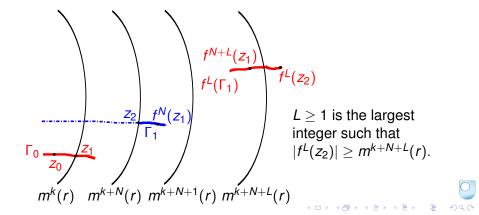
- for some $z_0 \in \Gamma_0$, $|f^n(z_0)| < m^k(r)$ for all $n \in \mathbb{N}$, and
- $\exists z_1 \in \Gamma_0 \cap \{z : |z| = m^k(r)\}.$



Choose $\Gamma_1 \subset f^N(\Gamma_0)$ so that it contains a point z_2 with modulus $m^{k+N}(r)$ but no points of smaller modulus.

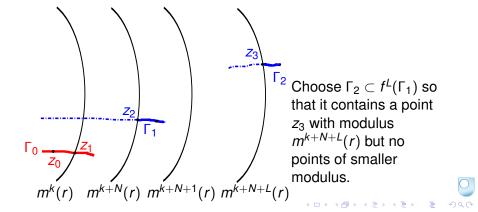
Suppose we have a continuum $\Gamma_0 \subset K(f)$ such that

- for some $z_0 \in \Gamma_0$, $|f^n(z_0)| < m^k(r)$ for all $n \in \mathbb{N}$, and
- $\exists z_1 \in \Gamma_0 \cap \{z : |z| = m^k(r)\}.$

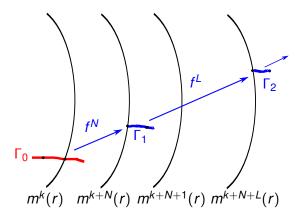


Suppose we have a continuum $\Gamma_0 \subset K(f)$ such that

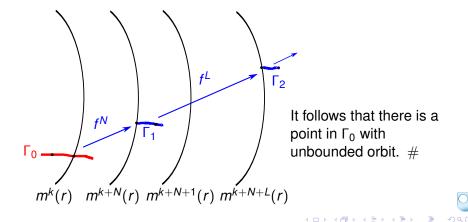
- for some $z_0 \in \Gamma_0$, $|f^n(z_0)| < m^k(r)$ for all $n \in \mathbb{N}$, and
- $\exists z_1 \in \Gamma_0 \cap \{z : |z| = m^k(r)\}.$



We have constructed a sequence (Γ_n) of compact sets such that $f^{k_n}(\Gamma_n) \supset \Gamma_{n+1}$ for some (k_n) .

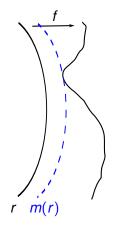


We have constructed a sequence (Γ_n) of compact sets such that $f^{k_n}(\Gamma_n) \supset \Gamma_{n+1}$ for some (k_n) .



Generalising the condition in Theorem A

'... there exists r > 0 such that $m^n(r) \to \infty$ as $n \to \infty$.'



We have:

- a sequence of nested discs
 {z: |z| < mⁿ(r)}
- that fill the plane
- such that each boundary circle is mapped outside the next disc in the sequence.

・ロト ・ 厚 ト ・ ヨ ト ・

ъ

Can we replace the discs by arbitrary bounded, simply connected domains?

Theorem C

Let f be a transcendental entire function, and $(D_n)_{n\in\mathbb{N}}$ be a sequence of bounded, simply connected domains such that

(a) $f(\partial D_n)$ surrounds D_{n+1} , for $n \in \mathbb{N}$, and

(b) every disc centred at 0 is contained in D_n for sufficiently large n.

Then $K(f)^c$ is connected.

Theorem C

Let f be a transcendental entire function, and $(D_n)_{n \in \mathbb{N}}$ be a sequence of bounded, simply connected domains such that

(a) $f(\partial D_n)$ surrounds D_{n+1} , for $n \in \mathbb{N}$, and

(b) every disc centred at 0 is contained in D_n for sufficiently large n.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Then $K(f)^c$ is connected.

Is this really more general than Theorem A?

Theorem C

Let f be a transcendental entire function, and $(D_n)_{n\in\mathbb{N}}$ be a sequence of bounded, simply connected domains such that

(a) $f(\partial D_n)$ surrounds D_{n+1} , for $n \in \mathbb{N}$, and

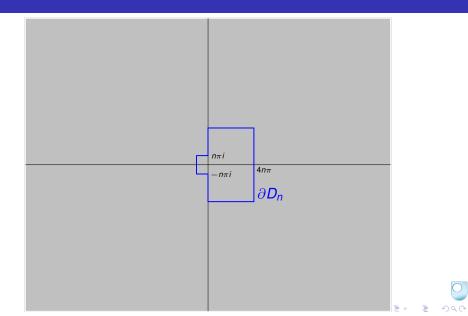
(b) every disc centred at 0 is contained in D_n for sufficiently large n.

Then $K(f)^c$ is connected.

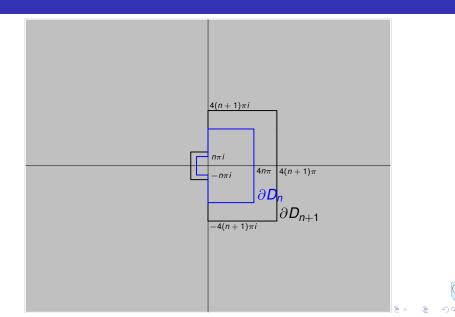
Is this really more general than Theorem A?

Example: Let $f(z) = -10ze^{-z} - \frac{1}{2}z$. Note that $m(r) \sim \frac{1}{2}r$ as $r \to \infty$, so Theorem A does not hold.

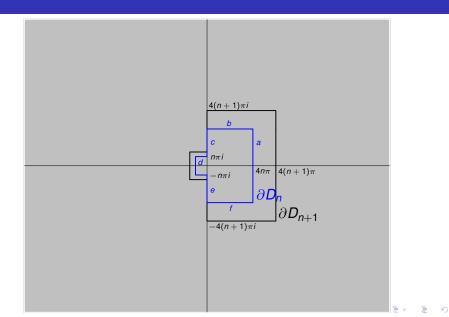
Example:
$$f(z) = -10ze^{-z} - \frac{1}{2}z$$



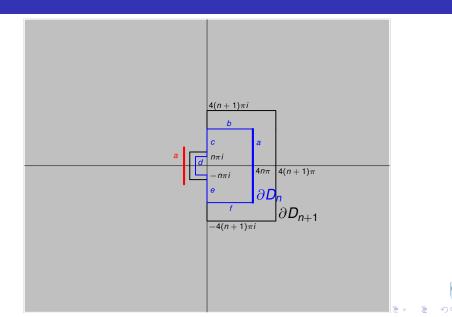
Example:
$$f(z) = -10ze^{-z} - \frac{1}{2}z$$



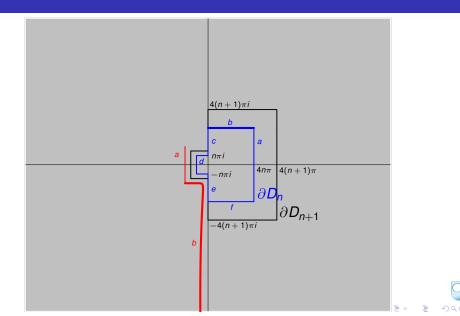
Example:
$$f(z) = -10ze^{-z} - \frac{1}{2}z$$



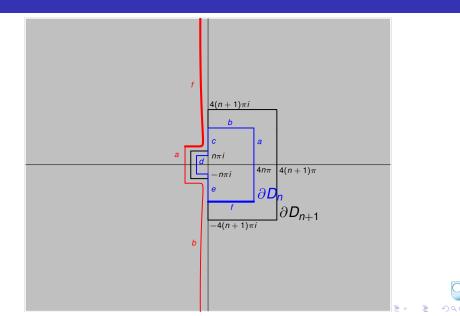
Example:
$$f(z) = -10ze^{-z} - \frac{1}{2}z$$



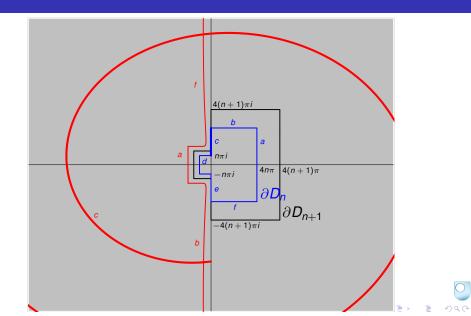
Example:
$$f(z) = -10ze^{-z} - \frac{1}{2}z$$



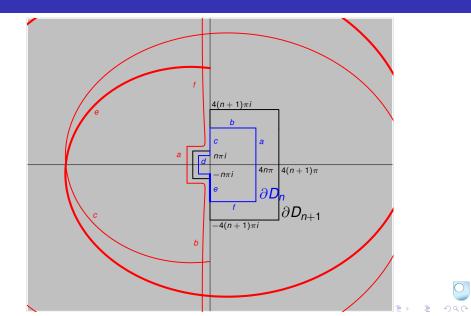
Example:
$$f(z) = -10ze^{-z} - \frac{1}{2}z$$



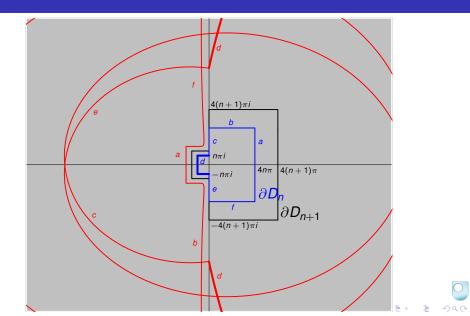
Example:
$$f(z) = -10ze^{-z} - \frac{1}{2}z$$



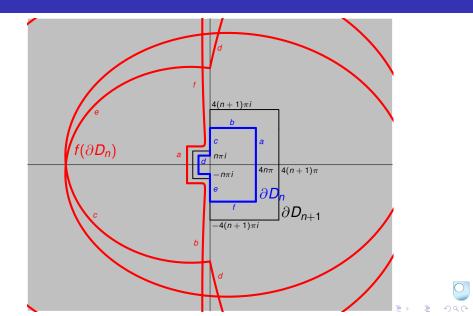
Example:
$$f(z) = -10ze^{-z} - \frac{1}{2}z$$



Example:
$$f(z) = -10ze^{-z} - \frac{1}{2}z$$



Example:
$$f(z) = -10ze^{-z} - \frac{1}{2}z$$



Theorem D

Let f be a transcendental entire function. Then:

- (a) $K(f)^c \cup \{\infty\}$ is connected.
- (b) Either K(f)^c is connected, or else every neighbourhood of a point in J(f) meets uncountably many components of K(f)^c.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

(c) If I(f) is connected, then $K(f)^c$ is connected.

Theorem D

Let f be a transcendental entire function. Then:

- (a) $K(f)^c \cup \{\infty\}$ is connected.
- (b) Either K(f)^c is connected, or else every neighbourhood of a point in J(f) meets uncountably many components of K(f)^c.
- (c) If I(f) is connected, then $K(f)^c$ is connected.

Thank you!