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The set of points whose orbits are unbounded

f an entire function, f n = f ◦ f ◦ . . . ◦ f
(f n(z))n∈N the orbit of z under f
K (f ) = set of points whose orbits are bounded
So K (f )c = set of points whose orbits are unbounded

K (f )c ⊃ I(f )

f a polynomial
K (f ) = filled Julia set
K (f )c = I(f ) ⊂ F (f )

K (f )c is connected

f transcendental
K (f ) unbounded
K (f )c \ I(f ) 6= ∅
When is K (f )c connected?
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Iterating the minimum modulus function

Define
m(r) = m(r , f ) := min{|f (z)| : |z| = r}
mn(r) to be the nth iterate of the function r 7→ m(r).
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For a transcendental
entire function
(compare the iteration
of M(r)):

@R > 0 with
m(r) > r ∀ r ≥ R
we can’t always
find r > 0 such
that mn(r)→∞ as
n→∞.
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Some functions for which K (f )c is connected

Theorem A

Let f be a transcendental entire function for which there exists
r > 0 such that mn(r)→∞ as n→∞. Then K (f )c is
connected.

Theorem B

Let f be a transcendental entire function of order less than 1
2 .

Then there exists r > 0 such that mn(r)→∞ as n→∞, and
therefore K (f )c is connected.

Recall that the order ρ of a transcendental entire function is
defined as

ρ := lim sup
r→∞

log log M(r , f )

log r
.
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An idea of the proof of Theorem A

Suppose K (f )c is disconnected.

Lemma

A subset X of C is disconnected if
and only if there exists a closed,
connected set Γ ⊂ X c such that at
least two different components of
Γc intersect X .

mk (r)
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Γ ⊂ K (f )
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An idea of the proof of Theorem A

Suppose we have a continuum Γ0 ⊂ K (f ) such that
for some z0 ∈ Γ0, |f n(z0)| < mk (r) for all n ∈ N, and
∃ z1 ∈ Γ0 ∩ {z : |z| = mk (r)}.
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mk+N(r) but no points
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An idea of the proof of Theorem A

We have constructed a sequence (Γn) of compact sets such
that f kn (Γn) ⊃ Γn+1 for some (kn).
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It follows that there is a
point in Γ0 with
unbounded orbit. #
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Generalising the condition in Theorem A

‘... there exists r > 0 such that mn(r)→∞ as n→∞.’

r

f

m(r)

We have:
a sequence of nested discs
{z : |z| < mn(r)}
that fill the plane
such that each boundary circle
is mapped outside the next
disc in the sequence.

Can we replace the discs by
arbitrary bounded, simply
connected domains?



A more general result

Theorem C

Let f be a transcendental entire function, and (Dn)n∈N be a
sequence of bounded, simply connected domains such that
(a) f (∂Dn) surrounds Dn+1, for n ∈ N, and
(b) every disc centred at 0 is contained in Dn for sufficiently

large n.
Then K (f )c is connected.

Is this really more general than Theorem A?

Example: Let f (z) = −10ze−z − 1
2z.

Note that m(r) ∼ 1
2 r as r →∞, so Theorem A does not hold.
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Further connectedness properties of K (f )c

Theorem D

Let f be a transcendental entire function. Then:
(a) K (f )c ∪ {∞} is connected.
(b) Either K (f )c is connected, or else every neighbourhood of

a point in J(f ) meets uncountably many components of
K (f )c .

(c) If I(f ) is connected, then K (f )c is connected.

Thank you!
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