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For some specific dynamical systems, the use of Markov partitions
in dynamics dates back to the early twentieth century.

Markov partitions for hyperbolic dynamical systems were developed
systematically by Rufus Bowen (and others) in the 1960’s and ’70’s.

Because interest then was concentrated on invertible dynamical
systems, the development was primarily for these.

There is surprisingly little early literature on the simpler case of
expanding dynamical systems.
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Partitions

Since we are interested in partitions of topological spaces, our
definition is as follows.

A partition P of a topological space X satisfies
1. P = {Pi : 1 ≤ i ≤ r} for some integer r ≥ 1, where Pi ⊂ X is

closed for 1 ≤ i ≤ r ,
2. X = ∪r

i=1Pi ,
3. int(Pi ) ∩ int(Pj) = ∅ for i 6= j , 1 ≤ i , j ≤ r ,

4. Pi = int(Pi ) for 1 ≤ i ≤ r .
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The intersection of any finite set of open dense sets is itself open
and dense, and the union of any finite set of nowhere dense sets is
nowhere dense. So from any set P which satisfies the first three
conditions we can find a set of (possibly smaller) sets which
satisfies all four conditions, simply by replacing P by

{int(P) : P ∈ P}

.

A set satisfying the first two conditions is a covering of X by closed
sets. If P is a covering by closed sets then we can make a set of
sets Q satisfying condition 3 also by

Q =


Pi1 ∩ Pi2 ∩ · · · ∩ Pis :
int(Pi1) ∩ · · · ∩ Int(Pis ) 6= ∅,
s maximal


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Any Hausdorff limit of a sequence of coverings by closed sets is also
a covering by closed sets. But the Hausdorff limit of a sequence of
partitions might not be a partition.

If P and Q are partitions of X then P ∨Q is also a partition of X
where

P ∨Q = {int(P) ∩ int(Q) : P ∈ P, Q ∈ Q}.
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The Markov property

We shall say that a partition or covering P = {Pi : 1 ≤ i ≤ r} of
X , is Markov respect to a map f : X → X if whenever
int(Pi ) ∩ f (Pj) 6= ∅ then

1. int(Pi ) ⊂ f (int(Pj)) and
2. int(Pi ) ∩ f (∂Pj) = ∅.

This is not a useful definition if f is invertible.

If int(Pi ) is connected then 2 implies 1.

If f is injective on Pi then 1 implies 2.

Given a Markov covering, the partition constructed from the
process outlined above is Markov.
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Expanding maps

The definition of Markov partition given is particularly useful for
expanding maps of compact metric spaces. A map
f : (X , d)→ (X , d) is expanding if there is λ > 1 and δ > 0 such
that d(f (x), f (y)) ≥ λd(x , y) whenever x , y ∈ X with d(x , y) ≤ δ.

An expanding map is locally injective. An expanding map of a
compact space is boundedly finite-to-one.
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Let P = {Pi : 1 ≤ i ≤ r}.

If f : (X , d)→ (X , d) is expanding on balls of diameter 3δ0, and
the sets in P have diameter ≤ δ0, then P is Markov for f if, for all
i and j ,

x ∈ int(Pi ) ∩ f −1(Pj) ∧ d(x , y) < δ0 ∧ y ∈ f −1(Pj)⇒ y ∈ Pi .

If f : X → X is continuous , and the sets in P are connected, then
P is Markov for f if, for all i and j , Pi contains every component of
f −1(Pj) which intersects int(Pi ).
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The alternative definitions of Markov form the basis of existence
results. The following result is essentially folklore, but I have not
been able to find an early reference. (as already remarked, the
focus in the 1960’s and ’70’s was on invertible systems.) A proof
can be found in [P-U].

Theorem
Let (X , d) be compact metric and let f : (X , d)→ (X , d) be
expanding. Then there are Markov partitions for f of arbitrarily
small diameter.
As one would expect, the proof is by a limiting process. One starts
with a partition P0 of small diameter. Inductively one makes a
partition Pn+1 by taking unions of suitable parts of the inverse
images of the sets in Pn. The expanding property of f leads to
geometric convergence of the sequence of partitions Pn, in the
Hausdorff topology. At the end one needs to make an adjustment
to make a partition rather than just a covering.
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Even if the sets in the original partition P0 are connected, this
process does not necessarily give connected sets in the limit,
because of the final adjustment needed.

The process does give connected sets in the limit if X is an interval
or circle, since any Hausdorff limit of a sequence of intervals is,
naturally, an interval.

But even in two dimensions, a Hausdorff limit of a sequence of
closed topological discs might not be a closed topological disc.
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On a two-dimensional manifold X , it is natural to restrict to
partitions such that the union of boundaries of sets in the partition
is a graph G , and the interiors of the sets in the partition are the
components of X \ G .

In this setting, the property of being Markov with respect to a
continuous open map f : X → X is simply:

G ⊂ f −1(G ).
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The process of finding a graph G with this invariance property,
starting with an initial choice of graph G0, involves constructing a
sequence Gn of graphs with Gn+1 ⊂ f −1(Gn). It is natural to
arrange that the graphs Gn are all homeomorphic, but it is not so
easy, in general, to ensure that Gn converges to a graph G which is
homeomorphic to Gn (for all n).

But this is true if there is a sequence of continuous injective maps
ϕn : G0 → Gn and it is possible to show that the sequence ϕn
converges uniformly to an injective map, because a continuous
injective map from a compact space to a Hausdorff space is a
homeomorphism.
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Theorem
(F.T. Farrell and L.E. Jones, TAMS 1979) Let f : X → X be an
expanding map on a compact Riemannian surface X . Let G0 be a
graph satisfying mild combinatorial conditions. Let ε > 0 be given.
Then there exists an integer N and a graph G within distance ε of
G0 such that G ⊂ f −N(G ).



The proof, is, once again, by a limiting process, with a sequence of
continuous injective maps ϕn : G0 → Gn for n ≥ 1, and satisfying
f N ◦ ϕn+1 = ϕn ◦ f N ◦ h for a homeomorphism

h : G0 → G1,

with
G1 ⊂ f −N(G0)

so that
f N ◦ ϕn+1 = ϕn ◦ f N ◦ h : G0 → Gn
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A key part of the proof is showing that the limit ϕ of the ϕn is
injective, and the required graph G is then ϕ(G0), and the equation

f N ◦ ϕ = ϕ ◦ f N ◦ h

gives

f N(G ) = f N(ϕ(G0)) = ϕ(f N(h(G0)) = ϕ(f N(G1)) =⊂ ϕ(G0) = G ,

so that
G ⊂ f −N(G ).
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Theorem
Let f : C→ C be a rational map such that every critical point is in
the Fatou set, and such that the closure of any Fatou component is
a closed topological disc, and all of these are disjoint. Let F0 be the
union of the periodic Fatou components, and let G0 ⊂ C \ F0 be a
connected piecewise C 1 graph satisfying certain (mild)
combinatorial conditions. Let U be a neighbourhood of G0

Then there exist an integer N and a graph G ′ ⊂ U which is isotopic
to G0 in U and such that G ′ ⊂ f −N(G ′).
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The “mild combinatorial conditions” turned out to be essentially
identical to those used by Farrell and Jones over 30 years earlier,
although I did not realise it at the time.

The set
X0 = ∪N−1

i=0 f −i (G ′)

satisfies
X0 ⊂ f −1(X0).

But is X0 a graph?
I thought for some time that I could prove that it was, but the
proof was flawed.
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The proof is, once again, by a limiting process.

This time, we start with the set

X0 = ∪N−1
i=0 f −i (X0)

which might, or might not, itself be a graph.
It is possible to assume that there are no arcs in

f −i (G ′) ∩ f −j(G ′)

for 0 ≤ i < j < N.
We then analyse the accumulation points of such sets.
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The idea of the proof is to first construct a Markov partition on X0
for f , such that each set in the partition has only finitely many
boundary points (in X0).

Then we choose a graph Γ0 ⊂ X0 and Γ1 ⊂ f −1(Γ0 and a
homeomorphism k1 : Γ0 → Γ1, where the arcs of Γ0 depend on the
boundaries of the sets in the Markov partition.
So is the homeomorphism k1, which maps Γ0 ∩ P to Γ1 ∩ P , for
each set P in the Markov partition.
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We then define ψ0 = identity and

f ◦ kn+1 = kn ◦ f

and, for n ≥ 1,
ψn = kn ◦ · · · k1.

We then have
f ◦ ψn+1 = ψn ◦ f ◦ k1.

Proof of injectivity of ψ = limn→∞ ψn is then similar to the proof
of injectivity of limn→∞ ϕn in the original theorem of Farrell and
Jones.
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It is well-known that an expanding map f are stable in the sense
that maps that are C 1 to f are topologically conjugate to f .
Rational maps are never globally stable (although in some cases
they are so for a suitable choice of metric with singularities).

But hyperbolic maps are stable on their Julia sets. In the same
vein, for the map f as in our theorem, for which parabolic cycles
are allowed, are expanding in a neighbourhood of the graph
constructed.

This means that there is a local topological conjugacy and the
graph, varies isotopically on a neighbourhood of f .

A natural first question is: which neighbourhood?
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Yoccoz Puzzle

The guide for any investigation of this type is the results about the
Yoccoz puzzle for quadratic polynomials z2 + c (c ∈ C), in
particular the parallels between the Yoccoz puzzle and the Yoccoz
parapuzzle.

The basic Markov partition in the Yoccoz puzzle for a quadratic
polynomial with connected Julia set, outside the main cardioid, is
the partition whose boundaries are formed by dynamical rays
landing at the α fixed point.
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There is one such partition for each limb of the Mandelbrot set.
Each limb is bounded from the others by two parameter rays
landing together on the Mandelbrot set at a parabolic parameter
value known as the root of the limb.

The partition can be regarded as a partition of the entire parameter
space, which identifies with the complex plane C. The boundary of
the partition then consists of the set of c such that the critical
value c lies in a union of two dynamical rays of rational argument
(the boundary of one of the sets in the dynamical partition) and a
single parabolic parameter value c .
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Lemma
Let f be a rational map. Let GC be a graph such that
G ⊂ f −1(G ). Suppose that there is an open neighbourhood U of
G which is disjoint from the critical values of f and such that U
contains the closure of any components of f −1(U) which intersect
G.

Then for g near f , there is a graph G (g) varying isotopically from
G = G (f ) with g, disjoint from the critical values of g , and such
that G (g) ⊂ g−1(G (g)).
In the cases considered, U = U(f ) can be chosen with boundary in
f −n(f )(G (f )) for some integer n(f ) > 0.

For f with this property, of course U(g) can be chosen for nearby
g , with n(g) = n(f ).

We say that a set of g is combinatorially bounded if G (g), U(g)
and n(g) exist as above for all g in the set, with an upper bound
on the integers n(g).
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Theorem
Let V1 be a maximal connected set of g for which G (g), U(g) and
n(g) exist as before, within a variety V of rational maps on which
the critical values vary isotopically. Let V2 ⊂ V1 be such that
V2 \ V1 6= ∅, where V2 denotes the closure in V .

Then V2 is not combinatorially bounded.

The proof involves looking at the Hausdorff limit of G (gn) for a
sequence gn with gn → ∂V2. Independent of combinatorial
boundedness, the first step is just to show that if the gn all lie in a
bounded set in V , then the edges of G (gn) remain homotopically
bounded. Once that is obtained, it is quite straightforward to show
that combinatorial boundedness implies that limn→∞ G (gn) is a
graph with the same properties as before.
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