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Newton’s method

Definition (Newton function)

Let f be a non-constant entire function. We Nf define by

Nf := id − f

f ′

and call it the Newton function of f. In order to find the zeros of f we
iterate Nf and we call this approach the Newton’s method.

The zeros of f are the attracting fixed points of Nf .
We are interested in a set of starting points such that we find all zeros of f .
The best possible set is the set of all zeros.
We are going to consider transcendental entire functions of the form:

f (z) = p(z)ez − 1.
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Where do I come from?

Hubbard, Schleicher, Sutherland solved the problem for practical
applications in a satisfying manner.

Theorem (Hubbard, Schleicher, Sutherland 2001)

For every d ≥ 2 there is a set Sd containing at most 1.11d log2(d) points
in C such that for every polynomial for every polynomial p of degree d and
every of its zeros there is a point s ∈ Sd that is in the immediate basin of
the chosen zero with respect to Np.

What can we say about transcendental entire functions instead of
polynomials?
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Where do I come from?

For a polynomial p(z) = zd +
d−1∑
k=0

akzk of degree d ∈ N, ak ∈ C, we define

Rp := max

{
1,

d−1∑
k=0

|ak |

}
.

Rp is the maximal modulus of any zero of p. For a positive, real R let

FR :=

{
f (z) = p(z)ez − 1

∣∣∣∣∣ p(z) = zd +
d−1∑
k=0

akzk , RP < R

}
.

Bergweiler gave an answer with an extra condition.

Theorem (Bergweiler 1993)

Let R > 0 and f ∈ FR . If (N ◦nf (z))n∈N converges to a finite limit for all
z ∈ { w | f ′′(w) = 0 }, then (N ◦nf (z))n∈N converges for an open dense set
of the complex plane.
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The point I want to reach.

Theorem (S1)

Let R > 0. For every d ≥ 2 there is a set Sd ,R ⊂ C such that for every
function f ∈ FR and every of its zeros there is a point s ∈ Sd ,R which is in
the immediate basin of the chosen zero with respect to Nf .

Sd ,R is not finite. But . . .

For all but finitly many zeros we have only one starting point in Sd ,R .

For the remaining zeros there are only finitly many starting points in
Sd ,R .

Sd ,R depends only on d and R.

How do we prove this claim?
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Preliminary

Definition (Accessible boundary point)

Let U be a simply connected domain in the Riemann Sphere Ĉ.
A point v ∈ ∂U is called accessible (from U),
if there exists a curve γ : [0, 1)→ U such that γ(t)→ v for t → 1.

Definition (Access to a boundary point)

For a fixed w ∈ U and an accessible point v ∈ ∂U
we call the homotopy class of curves γ : [0, 1)→ U such that γ(0) = w
and γ(t)→ v for t → 1 an access to v from U.
We call an access H to v from U invariant,
if there exists a curve γ ∈ H such that Nf (γ) ∈ H holds.
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Preliminary
Now consider a non-linear entire function f and its Newton-function Nf .
Let w be an attracting fixed point of Nf and U its immediate basin.

Are there accesses to ∞ from U and how many?

Theorem (Mayer, Schleicher 2006)

The immediate basin U of w is simply connected and unbounded.

Theorem (Baranski, Fagella, Jarque, Karpinska 2014)

If |w | is large, then the immediate basin U has infinity many acceses to ∞
and only one is invariant.
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Let’s take a look at some pictures

Figure : f (z) =
(

1− z2

2 + z3
)

ez − 1

(−50, 50)× (−75, 75)

Figure : f (z) = (z + 1)7 ez − 1
(−75, 75)× (−75, 75)
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Let’s take a look at some pictures

Figure : f (z) =
(

1− z2

2 + z3
)

ez − 1

(−50, 50)× (−75, 75)

How can we contruct the set Sd ,R?
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Let’s take a look at some pictures

Figure : f (z) =
(

1− z2

2 + z3
)

ez − 1

(−50, 50)× (−75, 75)

How can we contruct the set Sd ,R?

(1) Approximate zeros with large
modulus

(2) positions of the immediate
basins
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Let’s take a look at some pictures

Figure : f (z) =
(

1− z2

2 + z3
)

ez − 1

(−15, 15)× (−15, 15)

How can we contruct the set Sd ,R?

(1) Approximate zeros with large
modulus

(2) positions of the immediate
basins

(3) do some magic for the
smaller zeros
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(1) Approximate zeros of large modulus
Let w = x + iy denote a zero of f such that |w | is large.

Idea: p(z) ≈ zd for |z | large

=⇒ 0 = f (w) ≈ wdew − 1

=⇒ x ≈ −d ln |w | = −d

2
ln
(
x2 + y2

)
∧ y ≈ −d arg(w)

We see that x is negativ.

y2 ≈ e
−2x
d − x2.

This implies that y grows exponentially in −x .

=⇒ xk := −d ln |yk | ∧ yk := −d
π

2
+ 2πk

We set zk := xk + iyk for some k ∈ Z.
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(1) Approximate zeros of large modulus

G

U

Im

−Re

K = 1

zk

1 + ε 1− ε

yk + π

yk − π

D(zk , 0.165)

Nf (z) = z − 1 + e−z

zd
+ Err

K (z) :=
∣∣∣ e−z

zd

∣∣∣
|Nf (zk)− zk | < ε
|Nf (z)− z | ≥ ε , ∀z ∈ ∂G
Minimum principle
implies the existence
of a zero w ∈ G .

Some further calculations
show w ∈ D (zk , 0.165).

One theorem shows
D(zk , 0.165) ⊂ U.
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(2) Positions of an immediate basins

As before let w be a fixed point of Nf such that |w | is large.

Theorem (S2)

There exists an invariant curve γ in the immediate basin U of w such that
for every x ∈ R there is a point z ∈ tr (γ) such that Re(z) = x.
Furthermore, this curve is contained in a horizontal strip of finite height.

Then the immediate basin of a fixed point of smaller modulus is also
contained in a horizontal strip of finite height.
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(2) Existence of an invariant curve

Theorem (Jankowksi 1996)

There is an unbounded curve γ in U such that

γ(0) = w , lim
t→1

Re (γ(t)) = +∞ and Nf (γ) ⊂ tr (γ) .

Furthermore, there is a bounded intervall I ⊂ R such that

Im(z) ∈ I for every z ∈ Tr (γ) .

In order to complete the curve, we have to find a preimage of γ in the left
half plane. For this approach, we write the Newton function of f in the
following way:

Nf (z) = z − 1 +
e−z

zd
+ Err

Daniel Sommerfeld Positions of an immediate basins 18 / 22



Newton’s method for f (z) = p(z)ez − 1

(2) Existence of invariant curve

Nf

N−1f (γend)

Ψ1

Ψ2

N−1f (γbeg)

Im

Re

w

γ γendγbeg
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(3) Do some magic

Figure : f (z) =
(

1− z2

2 + z5
)

ez − 1

(−15, 15)× (−15, 15)

How do we ensure that we find
all zeros with small modulus?

We use the method from
Hubbard, Schleicher &
Sutherland 2001.

We showed that the
immediate basins are
contained in a horizontal
strip of finite height.

We have to show that the
accesses to infinity have a
minimal width.

Put some equidistant
points on a vertical line.

Daniel Sommerfeld Positions of an immediate basins 20 / 22



Newton’s method for f (z) = p(z)ez − 1

The end

Thank you for your attention.
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