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The escaping set

Definition

The escaping set is

I(f ) = {z : f n(z)→∞ as n→∞}.

For polynomials:
I(f ) is a neighbourhood
of∞;
points in I(f ) escape at
same rate;
I(f ) ⊂ F (f );
J(f ) = ∂I(f ).

For transcendental functions:
I(f ) is not a neighbourhood of
∞;
points in I(f ) escape at
different rates;
I(f ) can meet both F (f ) and
J(f ).
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Eremenko’s conjectures

Theorem (Eremenko, 1989)

If f is transcendental entire then
J(f ) ∩ I(f ) 6= ∅;
J(f ) = ∂I(f );
all components of I(f ) are unbounded.

Eremenko’s conjectures
1. All components of I(f ) are unbounded.
2. I(f ) consists of curves to∞.

Theorem (Rottenfusser, Rückert, Rempe and Schleicher, 2011)

Conjecture 2 holds for many functions in class B but fails for
others in class B.
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General results on Eremenko’s conjecture

Theorem (R+S, 2005)

I(f ) has at least one unbounded component.

Theorem (R+S, 2011/2014)

I(f ) is connected or has infinitely many unbounded
components.

Theorem (R+S, 2014)

I(f ) is connected or, for large R > 0, I(f ) ∩ {z : |z| ≥ R} has
uncountably many unbounded components.



General results on Eremenko’s conjecture

Theorem (R+S, 2005)

I(f ) has at least one unbounded component.

Theorem (R+S, 2011/2014)

I(f ) is connected or has infinitely many unbounded
components.

Theorem (R+S, 2014)

I(f ) is connected or, for large R > 0, I(f ) ∩ {z : |z| ≥ R} has
uncountably many unbounded components.



General results on Eremenko’s conjecture

Theorem (R+S, 2005)

I(f ) has at least one unbounded component.

Theorem (R+S, 2011/2014)

I(f ) is connected or has infinitely many unbounded
components.

Theorem (R+S, 2014)

I(f ) is connected or, for large R > 0, I(f ) ∩ {z : |z| ≥ R} has
uncountably many unbounded components.



The fast escaping set
Bergweiler and Hinkkanen, 1999

All these results were proved by studying fast escaping points.

Definition

The maximum modulus function is defined by

M(R) = max
|z|=r

|f (z)|, for R > 0.

If R is sufficiently large, then Mn(R)→∞ as n→∞ and we
consider the following set of fast escaping points.

Definition

AR(f ) = {z ∈ C : |f n(z)| ≥ Mn(R) ∀ n ∈ N}

The fast escaping set A(f ) consists of this set and all its
pre-images.
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Examples
Exponential functions - disconnected escaping set

f (z) = λez , 0 < λ < 1/e

J(f ) is a Cantor bouquet of
curves
I(f ) consists of these
curves minus some of the
endpoints
A(f ) consists of these
curves minus some of the
endpoints
AR(f ) is an uncountable
union of curves, for large
R > 0
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Examples
Fatou’s function - connected escaping set

f (z) = z + 1 + e−z

F (f ) is a Baker domain – a
periodic Fatou component
in I(f )
J(f ) is a Cantor bouquet of
curves - all in A(f ) apart
from some endpoints
I(f ) is connected
AR(f ) is an uncountable
union of curves, for large
R > 0
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Examples
Connected fast escaping set

f (z) = cosh2 z

I(f ) is connected
A(f ) is connected
AR(f ) has infinitely many
unbounded components,
for large R > 0
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Examples
Spider’s web

f (z) = (cos z1/4 + cosh z1/4)/2

Definition

E is a spider’s web if
E is connected;
there is a sequence of
bounded simply
connected domains Gn
with

∂Gn ⊂ E , Gn+1 ⊃ Gn,⋃
n∈N

Gn = C.

Each of I(f ), A(f ) and AR(f ) is connected and is a spider’s web.
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Main result on AR(f )

Theorem (R+S, 2014)

For large R > 0, either AR(f ) is a spider’s web, or AR(f ) has
uncountably many unbounded components.

We prove this by combining the methods used to prove two
earlier theorems:

Theorem (Eremenko, 1989)

For large R > 0, AR(f ) 6= ∅.

Theorem (R+S, 2005)

For large R > 0, all the components of AR(f ) are unbounded.
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Sketch proof

Theorem

For large R > 0, either AR(f ) is a spider’s web, or AR(f ) has
uncountably many unbounded components.

Step 1 Use Eremenko’s method (based on Wiman-Valiron
theory) to construct an ‘Eremenko point’ in AR(f ).
Step 2 Refine Eremenko’s method to construct uncountably
many points in AR(f ).
Step 3 Show that, if two of these points are in the same
component of AR(f ), then AR(f ) is a spider’s web.
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Open questions

1. If I(f ) is disconnected, must it have uncountably many
unbounded components?

2. If A(f ) is disconnected, must it be an uncountable union of
unbounded components?
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