Introduction to the dynamics of holomorphic endomorphisms of \mathbb{P}^k

Dimitra Tsigkari

Postgraduate Conference in Complex Dynamics, London, 11-13 March 2015

Dynamics in Several Complex Variables

ヘロト 人間 ト くほ ト くほ トー

Outline

2 Elements of Pluripotential Theory

The Green current of a holomorphic endomorphism

Dynamics in Several Complex Variables

ヘロト 人間 ト くほ ト くほ トー

ъ

Outline

2 Elements of Pluripotential Theory

3 The Green current of a holomorphic endomorphism

Dynamics in Several Complex Variables

・ロット (雪) () () () ()

э

Complex Projective Space \mathbb{CP}^k

Let $z, w \in \mathbb{C}^{k+1}$. Consider the equivalence relation: $z \sim w$ if there is $\lambda \in \mathbb{C}^*$ such that $z = \lambda w$.

Definition

The projective space of dimension *k* is the quotient of $\mathbb{C}^{k+1} \setminus \{0\}$ by this relation, i.e. $\mathbb{P}^k := \mathbb{C}^{k+1} \setminus \{0\} /_{\sim}$.

くロト (過) (目) (日)

Complex Projective Space \mathbb{CP}^k

Let $z, w \in \mathbb{C}^{k+1}$. Consider the equivalence relation: $z \sim w$ if there is $\lambda \in \mathbb{C}^*$ such that $z = \lambda w$.

Definition

The projective space of dimension *k* is the quotient of $\mathbb{C}^{k+1} \setminus \{0\}$ by this relation, i.e. $\mathbb{P}^k := \mathbb{C}^{k+1} \setminus \{0\} /_{\sim}$.

In other words, \mathbb{P}^k is the parameter space of the complex lines passing through 0 in \mathbb{C}^{k+1} .

We denote by $[z_0 : z_1 : \ldots : z_k]$ the point of \mathbb{P}^k associated to the point (z_0, z_1, \ldots, z_k) of $\mathbb{C}^{k+1} \smallsetminus \{0\}$.

ヘロト 人間 とくほとくほとう

Complex Projective Space \mathbb{CP}^k

The space \mathbb{P}^k is:

- a compact complex manifold of dimension *k*.
- the holomorphic compactification of \mathbb{C}^k .

Dynamics in Several Complex Variables

くロト (過) (目) (日)

Complex Projective Space \mathbb{CP}^k

The space \mathbb{P}^k is:

- a compact complex manifold of dimension *k*.
- the holomorphic compactification of \mathbb{C}^k .

We equip the space \mathbb{P}^k with the *Fubini-Study* metric.

ヘロト ヘ戸ト ヘヨト ヘヨト

Holomorphic Endomorphisms of \mathbb{P}^k

Theorem

Let $f : \mathbb{P}^k \to \mathbb{P}^k$ be a holomorphic endomorphism. Then f is described by the coordinates $[f_0 : f_1 : \ldots : f_k]$ where each f_j is a homogeneous polynomial of degree d and the f_j have no common zero except the origin.

ヘロン 人間 とくほ とくほ とう

Theorem

Let $f : \mathbb{P}^k \to \mathbb{P}^k$ be a holomorphic endomorphism. Then f is described by the coordinates $[f_0 : f_1 : \ldots : f_k]$ where each f_j is a homogeneous polynomial of degree d and the f_j have no common zero except the origin.

The space of holomorphic endomorphisms of degree *d* is denoted by \mathcal{H}_d . Examples:

・ロト ・ 理 ト ・ ヨ ト ・

Theorem

Let $f : \mathbb{P}^k \to \mathbb{P}^k$ be a holomorphic endomorphism. Then f is described by the coordinates $[f_0 : f_1 : \ldots : f_k]$ where each f_j is a homogeneous polynomial of degree d and the f_j have no common zero except the origin.

The space of holomorphic endomorphisms of degree *d* is denoted by \mathcal{H}_d . Examples:

•
$$f: \mathbb{P}^k \to \mathbb{P}^k$$
,
 $[z_0: z_1: \ldots: z_k] \mapsto [z_0^d: z_1^d: \ldots: z_k^d], d \ge 2$. So $f \in \mathcal{H}_d$.

・ロト ・ 理 ト ・ ヨ ト ・

Theorem

Let $f : \mathbb{P}^k \to \mathbb{P}^k$ be a holomorphic endomorphism. Then f is described by the coordinates $[f_0 : f_1 : \ldots : f_k]$ where each f_j is a homogeneous polynomial of degree d and the f_j have no common zero except the origin.

The space of holomorphic endomorphisms of degree d is denoted by \mathcal{H}_d .

Examples:

•
$$f : \mathbb{P}^k \to \mathbb{P}^k$$
,
 $[z_0 : z_1 : \ldots : z_k] \mapsto [z_0^d : z_1^d : \ldots : z_k^d], d \ge 2$. So $f \in \mathcal{H}_d$.
• $g : \mathbb{C}^2 \to \mathbb{C}^2, g(z_0, z_1) = (z_0 + 1, z_0^d + z_0 z_1^{d-1})$.

・ロト ・ 理 ト ・ ヨ ト ・

Theorem

Let $f : \mathbb{P}^k \to \mathbb{P}^k$ be a holomorphic endomorphism. Then f is described by the coordinates $[f_0 : f_1 : \ldots : f_k]$ where each f_j is a homogeneous polynomial of degree d and the f_j have no common zero except the origin.

The space of holomorphic endomorphisms of degree d is denoted by \mathcal{H}_d .

Examples:

•
$$f: \mathbb{P}^k \to \mathbb{P}^k$$
,
 $[z_0: z_1: \ldots: z_k] \mapsto [z_0^d: z_1^d: \ldots: z_k^d], d \ge 2$. So $f \in \mathcal{H}_d$.
• $g: \mathbb{C}^2 \to \mathbb{C}^2, g(z_0, z_1) = (z_0 + 1, z_0^d + z_0 z_1^{d-1})$.
We extend g to \mathbb{P}^2 :
 $\tilde{g}: [z_0: z_1: z_2] \mapsto [z_0 z_2^{d-1} + z_2^d: z_0^d + z_0 z_1^{d-1}: z_2^d]$. Then $\tilde{g} \notin \mathcal{H}_d$.

Fatou and Julia sets

As in dynamics in one complex variable, we define:

Definition

Let $f \in \mathcal{H}_d(\mathbb{P}^k)$. We define the Fatou set \mathcal{F} of f as the largest open set where the family of iterates $\{f^n\}_{n=1,2,\dots}$ is locally equicontinuous. The Julia set \mathcal{J} of f is defined by $\mathcal{J} := \mathbb{P}^k \setminus \mathcal{F}$.

ヘロト ヘアト ヘビト ヘビト

Outline

2 Elements of Pluripotential Theory

3 The Green current of a holomorphic endomorphism

Dynamics in Several Complex Variables

ヘロア ヘビア ヘビア・

ъ

Pluriharmonic Functions

Definition

Let $\Omega \subset \mathbb{C}^n$ be an open subset and $u \in \mathcal{C}^2(\Omega)$ be a real valued function.

- *u* is said to be *pluriharmonic* in Ω if, for every *a*, *b* ∈ Cⁿ, the function λ → u(a + λb) is harmonic in {λ ∈ C|a + λb ∈ Ω}.
- u is *pluriharmonic* in Ω if

$$\frac{\partial^2 u}{\partial z_j \partial \bar{z}_k} = 0$$
 in Ω , where $j, k = 1, \dots, n$.

イロト 不得 とくほと くほとう

Plurisubharmonic Functions

Definition

Let Ω be an open subset of \mathbb{C}^n , and let $u : \Omega \to [-\infty, \infty)$ be an upper semicontinuous function which is not identically $-\infty$ on any connected component of Ω . The function u is said to be *plurisubharmonic* if for each $a \in \Omega$, $b \in \mathbb{C}^n$, the function $\lambda \mapsto u(a + \lambda b)$ is subharmonic or identically $-\infty$ on every component of the set $\{\lambda \in \mathbb{C} | a + \lambda b \in \Omega\}$.

< ロ > < 同 > < 臣 > < 臣 > -

Plurisubharmonic Functions

Definition

Let Ω be an open subset of \mathbb{C}^n , and let $u : \Omega \to [-\infty, \infty)$ be an upper semicontinuous function which is not identically $-\infty$ on any connected component of Ω . The function u is said to be *plurisubharmonic* if for each $a \in \Omega$, $b \in \mathbb{C}^n$, the function $\lambda \mapsto u(a + \lambda b)$ is subharmonic or identically $-\infty$ on every component of the set $\{\lambda \in \mathbb{C} | a + \lambda b \in \Omega\}$.

Example:

If $f: U \to \mathbb{C}$ is holomorphic in the open set $U \subset \mathbb{C}^n$ and $f \not\equiv 0$, then the function $\log |f|$ is plurisubharmonic in U.

ヘロト 人間 ト くほ ト くほ トー

Differential Forms and Currents

Dynamics in Several Complex Variables

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Differential Forms and Currents

- *D*^{p,q}(Ω) : the space of differential forms of class C[∞] in Ω ⊂ Cⁿ with compact support and whose bidegree is (p,q).
- If $\varphi \in \mathcal{D}^{p,q}(\Omega)$, then $\varphi = \sum \varphi_{IJ} dz_I \wedge d\overline{z}_J$, where $\varphi_{IJ} \in \mathcal{C}_k^{\infty}(\Omega)$ and $\sharp I = p, \sharp J = q$.

イロト 不得 とくほ とくほ とう

э.

Differential Forms and Currents

- *D*^{p,q}(Ω) : the space of differential forms of class C[∞] in Ω ⊂ Cⁿ with compact support and whose bidegree is (p,q).
- If $\varphi \in \mathcal{D}^{p,q}(\Omega)$, then $\varphi = \sum \varphi_{IJ} dz_I \wedge d\overline{z}_J$, where $\varphi_{IJ} \in \mathcal{C}_k^{\infty}(\Omega)$ and $\sharp I = p, \sharp J = q$.

Definition

The elements of the dual space $(\mathcal{D}^{n-p,n-q}(\Omega))'$ are called *currents* of bidegree (p,q).

イロト イポト イヨト イヨト

Differential Forms and Currents

- *D*^{p,q}(Ω) : the space of differential forms of class C[∞] in Ω ⊂ Cⁿ with compact support and whose bidegree is (p,q).
- If $\varphi \in \mathcal{D}^{p,q}(\Omega)$, then $\varphi = \sum \varphi_{IJ} dz_I \wedge d\overline{z}_J$, where $\varphi_{IJ} \in \mathcal{C}_k^{\infty}(\Omega)$ and $\sharp I = p, \sharp J = q$.

Definition

The elements of the dual space $(\mathcal{D}^{n-p,n-q}(\Omega))'$ are called *currents* of bidegree (p,q).

- A current *S* is written as: $S = \sum S_{IJ} dz_I \wedge d\overline{z}_J$, where the coefficients S_{IJ} are distributions.
- If S is a positive (p,p)-current, then the coefficients S_{IJ} are measures.

Currents and Plurisubharmonic Functions

- We define the diff. operator $dd^c = 2i\partial\overline{\partial}$.
- A function $u \in L^1_{loc}(\Omega)$ is a.e. equal to a p.s.h. function iff

$$dd^{c}u = 2i\sum_{i,j}\frac{\partial^{2}u}{\partial z_{i}\partial \overline{z}_{j}}dz_{i}\wedge d\overline{z}_{j}\geq 0.$$

イロト イポト イヨト イヨト

Currents and Plurisubharmonic Functions

- We define the diff. operator $dd^c = 2i\partial\overline{\partial}$.
- A function $u \in L^1_{loc}(\Omega)$ is a.e. equal to a p.s.h. function iff

$$dd^{c}u = 2i\sum_{i,j}\frac{\partial^{2}u}{\partial z_{i}\partial \overline{z}_{j}}dz_{i}\wedge d\overline{z}_{j}\geq 0.$$

Important Theorem

Every (1,1) positive closed current *S* corresponds to a plurisubharmonic function *u*. The function *u* verifies the equation

$$dd^c u = S.$$

ヘロト 人間 ト ヘヨト ヘヨト

- We consider the *Fubini-Study* differential form ω_{FS} in \mathbb{P}^k .
- ω_{FS} is written locally as

$$\omega_0 = dd^c \log |z|.$$

Dynamics in Several Complex Variables

イロト 不得 とくほと くほとう

Outline

2 Elements of Pluripotential Theory

The Green current of a holomorphic endomorphism

Dynamics in Several Complex Variables

ヘロア ヘビア ヘビア・

ъ

Green Current

Theorem

If $f \in \mathcal{H}_d(\mathbb{P}^k)$, then the sequence of currents

$$\left\{\frac{1}{d^n}(f^n)^*(\omega_{FS})\right\}_{n\in\mathbb{N}}$$

converges to a (1, 1) positive closed current *T*, the *Green current*.

イロン 不得 とくほ とくほ とうほ

Green Current : Example

•
$$f: [z:w:t] \mapsto [z^d:w^d:t^d].$$

Dynamics in Several Complex Variables

ヘロト 人間 とくほとくほとう

₹ 990

Green Current : Example

•
$$f : [z : w : t] \mapsto [z^d : w^d : t^d].$$

• $f^n : [z : w : t] \mapsto [z^{d^n} : w^{d^n} : t^{d^n}].$

Dynamics in Several Complex Variables

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Green Current : Example

•
$$f: [z:w:t] \mapsto [z^d:w^d:t^d].$$

• $f^n: [z:w:t] \mapsto [z^{d^n}:w^{d^n}:t^{d^n}].$

• We define the sequence

$$G_n := \frac{1}{d^n} \log |(z^{d^n}, w^{d^n}, t^{d^n})|, n = 1, 2 \dots$$

Dynamics in Several Complex Variables

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Green Current : Example

•
$$f: [z:w:t] \mapsto [z^d:w^d:t^d].$$

• $f^n: [z:w:t] \mapsto [z^{d^n}:w^{d^n}:t^{d^n}].$

- We define the sequence $G_n := \frac{1}{d^n} \log |(z^{d^n}, w^{d^n}, t^{d^n})|, n = 1, 2....$
- $G = \lim_{n \to \infty} G_n = \sup\{ \log |z|, \log |w|, \log |t| \}.$

イロト 不得 とくほ とくほとう

Green Current : Example

•
$$f: [z:w:t] \mapsto [z^d:w^d:t^d].$$

• $f^n: [z:w:t] \mapsto [z^{d^n}:w^{d^n}:t^{d^n}].$

- We define the sequence $G_n := \frac{1}{d^n} \log |(z^{d^n}, w^{d^n}, t^{d^n})|, n = 1, 2 \dots$
- $G = \lim_{n \to \infty} G_n = \sup\{\log |z|, \log |w|, \log |t|\}.$
- The plurisubharmonic function *G* corresponds to the Green current of *f*:

$$dd^c G = T.$$

ヘロン 人間 とくほ とくほ とう

Julia set & Green current

Theorem

If $f \in \mathcal{H}_d$ and let T be the Green current associated to f, then

$$Supp T = \overline{\{T \neq 0\}} = \mathcal{J}.$$

Dynamics in Several Complex Variables

ヘロト 人間 とくほとく ほとう

The Green measure

• We consider the (k, k) Green current $\mu := T^k = T \wedge T \wedge \ldots \wedge T$ (k times).

イロト 不得 とくほと くほとう

The Green measure

- We consider the (k, k) Green current $\mu := T^k = T \wedge T \wedge \ldots \wedge T$ (k times).
- μ is a probability measure. It's the Green measure associated to f.

ヘロン 人間 とくほ とくほ とう

The Green measure

- We consider the (k, k) Green current $\mu := T^k = T \wedge T \wedge \ldots \wedge T$ (k times).
- μ is a probability measure. It's the Green measure associated to f.
- The Green measure is invariant by f, i.e. $f_*\mu = \mu$.

ヘロン 人間 とくほ とくほ とう

The Green measure

- We consider the (k, k) Green current $\mu := T^k = T \wedge T \wedge \ldots \wedge T$ (k times).
- μ is a probability measure. It's the Green measure associated to f.
- The Green measure is invariant by f, i.e. $f_*\mu = \mu$.

Theorem

The Green measure μ is the only invariant measure that maximises the entropy.

ヘロト 人間 ト くほ ト くほ トー

Thank you for your attention.

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで