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Why quasiregular maps?

We are interested in a natural generalisation of analytic functions in the
complex plane to higher dimensions.
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Why quasiregular maps?

We are interested in a natural generalisation of analytic functions in the
complex plane to higher dimensions.
For G ⊂ C open, a function f : G → C is holomorphic, if and only if

f is C1 in the real sense and

‖f ′(z)‖2 = Jf (z) for all z ∈ G ,

where Jf denotes the Jacobian determinant of f . Hence holomorphic
functions map infinitesimal small circles to infinitesimal small circles.

We can easily generalise this definition to higher dimensions. But if we
take G ⊂ R

d open and f : G → R
d satisfying

f is C1 in the real sense and

‖Df (x)‖d = Jf (x) for all x ∈ G ,

then f is either constant or a sense preserving Möbius transformation.
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Why quasiregular maps?

In order to get a more interesting class of functions, we relax the
conditions in the following way:
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Why quasiregular maps?

In order to get a more interesting class of functions, we relax the
conditions in the following way:

Definition

A continuous function f : Rd → R
d is called quasiregular, if

f ∈ W 1
d,loc(R

d)

there exists K ≥ 1, such that ‖Df (x)‖d ≤ KJf (x) a.e.,

where W 1
d,loc(R

d) denotes the set of all functions

f = (f1, . . . fd) : U → R
d , for which the weak partial first order

derivatives ∂k fi exist and are locally in Ld .
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In order to get a more interesting class of functions, we relax the
conditions in the following way:

Definition

A continuous function f : Rd → R
d is called quasiregular, if

f ∈ W 1
d,loc(R

d)

there exists K ≥ 1, such that ‖Df (x)‖d ≤ KJf (x) a.e.,

where W 1
d,loc(R

d) denotes the set of all functions

f = (f1, . . . fd) : U → R
d , for which the weak partial first order

derivatives ∂k fi exist and are locally in Ld .

Hence f maps infinitesimal small balls to infinitesimal small ellipsoids
with bounded eccentricity.
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Why quasiregular maps?

Quasiregular maps are differentiable almost everywhere.
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in general the dilatation grows.

There are analogues of Picard’s and Montel’s theorem, but for
Montel’s analogue we need that the iterates are uniformly
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Why quasiregular maps?

Quasiregular maps are differentiable almost everywhere.

Non-constant quasiregular maps are open and discrete.

The composition of two quasiregular maps is again quasiregular, but
in general the dilatation grows.

There are analogues of Picard’s and Montel’s theorem, but for
Montel’s analogue we need that the iterates are uniformly
quasiregular.

There is no obvious definition of the Julia set of non-uniformly
quasiregular maps.

However, the escaping set

I(f ) :=
{

x ∈ R
d : ‖f n(x)‖ → ∞ for n → ∞

}

is still easy to define.
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Reminder: Construction of complex exp via real exp
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Reminder: Construction of complex exp via real exp

−π

2 i

π

2 i

h

h :
[

−π

2 , π

2

]

→ C, t 7→ cos t + i sin t

h(y)
y
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Reminder: Construction of complex exp via real exp

−π

2 i

π

2 i
z

exp

exp(Re z) · h(Im z)

h :
[

−π

2 , π

2

]

→ C, t 7→ cos t + i sin t
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Construction of quasiregular sine (by Bergweiler and Eremenko)

R
d

[−1, 1]d−1 × [0, 1]
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Construction of quasiregular sine (by Bergweiler and Eremenko)

h

R
d

[−1, 1]d−1 × [0, 1]
{

x ∈ R
d : ‖x‖ ≤ 1, xd ≥ 0

}

bi-Lipschitz
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Construction of quasiregular sine (by Bergweiler and Eremenko)

x Sin(x) = exp(xd − 1)h((x1, ..., xd−1, 1))

Sin
(x1, ..., xd−1, 1)

h((x1, ..., xd−1, 1))

[−1, 1]d−1 × [0, ∞)
{

x ∈ R
d : xd ≥ 0

}
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Construction of quasiregular sine (by Bergweiler and Eremenko)

x x ′

x ′′
Sin(x ′) = Sin(x ′′)

Sin(x) = exp(xd − 1)h((x1, ..., xd−1, 1))

Sin
(x1, ..., xd−1, 1)

h((x1, ..., xd−1, 1))
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Dynamical behaviour of quasiregular sine (compared to π sin)

Theorem (Bergweiler and Eremenko 2011)

There exists a representation of Rd as a union of hairs (i.e. injective
curves to ∞) with the following properties:
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There exists a representation of Rd as a union of hairs (i.e. injective
curves to ∞) with the following properties:

the intersection of two hairs is either empty or consists of the
common endpoint;

the union of the hairs without their endpoints has Hausdorff
dimension 1.

This representation is defined by the dynamics of the (locally expanding)
map λ Sin, λ sufficiently large (depending on the bi-Lipschitz map h).

Theorem (Fletcher and Nicks 2012)

For λ sufficiently large, the periodic points of f := λ Sin are dense in R
d .
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Dynamical behaviour of quasiregular sine (compared to π sin)

Theorem (Bergweiler and Eremenko 2011)

There exists a representation of Rd as a union of hairs (i.e. injective
curves to ∞) with the following properties:

the intersection of two hairs is either empty or consists of the
common endpoint;

the union of the hairs without their endpoints has Hausdorff
dimension 1.

This representation is defined by the dynamics of the (locally expanding)
map λ Sin, λ sufficiently large (depending on the bi-Lipschitz map h).

Theorem (Fletcher and Nicks 2012)

For λ sufficiently large, the periodic points of f := λ Sin are dense in R
d .

Furthermore, f has the blowing-up property everywhere in R
d , that is

∞
⋃

k=0

f k(U) = R
d , for any non-empty open set U ⊂ R

d .
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Dynamical behaviour of quasiregular sine

For arbitrary functions in the (complex) sine family, we know the
following result by McMullen:
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Dynamical behaviour of quasiregular sine

For arbitrary functions in the (complex) sine family, we know the
following result by McMullen:

Theorem (McMullen 1987)

For g(z) = λ sin(z) + µ, λ 6= 0, the set I(g) has positive area.

We get the following analogue of this theorem:

Theorem 1

The escaping set of Sin has positive measure, i.e.

meas(I(Sin)) > 0,

where meas denotes the d-dimensional Lebesgue measure.
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Dynamical behaviour of quasiregular sine

For arbitrary functions in the (complex) sine family, we know the
following result by McMullen:

Theorem (McMullen 1987)

For g(z) = λ sin(z) + µ, λ 6= 0, the set I(g) has positive area.

We get the following analogue of this theorem:

Theorem 1

The escaping set of Sin has positive measure, i.e.

meas(I(Sin)) > 0,

where meas denotes the d-dimensional Lebesgue measure.

Note that Sin does not need to be locally expanding.
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Heuristic principle of the proof meas(I(Sin)) > 0

We are going to show, that the set of points which escape exponentially
fast in direction xd has positive measure.
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Heuristic principle of the proof meas(I(Sin)) > 0

We are going to show, that the set of points which escape exponentially
fast in direction xd has positive measure.
Put

L :=

{

x ∈ R
d : | Sind(x)| ≥ exp

(

1

2
|xd |

)}
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We are going to show, that the set of points which escape exponentially
fast in direction xd has positive measure.
Put

L :=

{

x ∈ R
d : | Sind(x)| ≥ exp

(

1

2
|xd |

)}

and
T := {x ∈ L : Sinn(x) ∈ L for all n ∈ N} .

Then T ⊂ I(Sin).
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Heuristic principle of the proof meas(I(Sin)) > 0

We are going to show, that the set of points which escape exponentially
fast in direction xd has positive measure.
Put

L :=

{

x ∈ R
d : | Sind(x)| ≥ exp

(

1

2
|xd |

)}

and
T := {x ∈ L : Sinn(x) ∈ L for all n ∈ N} .

Then T ⊂ I(Sin). For n ≥ 0 denote by

Tn :=
{

x ∈ L : Sink(x) ∈ L for 0 ≤ k ≤ n
}

the set of points, which stay in L for at least n iterations.

S. Vogel (University of Kiel) Measure of the escaping set 12 March 2015 10 / 20



Heuristic principle of the proof meas(I(Sin)) > 0

We are going to show, that the set of points which escape exponentially
fast in direction xd has positive measure.
Put

L :=

{

x ∈ R
d : | Sind(x)| ≥ exp

(

1

2
|xd |

)}

and
T := {x ∈ L : Sinn(x) ∈ L for all n ∈ N} .

Then T ⊂ I(Sin). For n ≥ 0 denote by

Tn :=
{

x ∈ L : Sink(x) ∈ L for 0 ≤ k ≤ n
}

the set of points, which stay in L for at least n iterations. Finally put

S := R
d \ L.
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Heuristic principle of the proof meas(I(Sin)) > 0

For A, B ⊂ R
d measurable we denote the density of A in B by

dens(A, B) :=
meas(A ∩ B)

meas(B)
.
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For A, B ⊂ R
d measurable we denote the density of A in B by

dens(A, B) :=
meas(A ∩ B)

meas(B)
.

Denote the axis parallel cube around x with edges of length |xd | by

Q(x) :=

{

y ∈ R
d : |yj − xj | ≤

|xd |

2

}

.
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Heuristic principle of the proof meas(I(Sin)) > 0

For A, B ⊂ R
d measurable we denote the density of A in B by

dens(A, B) :=
meas(A ∩ B)

meas(B)
.

Denote the axis parallel cube around x with edges of length |xd | by

Q(x) :=

{

y ∈ R
d : |yj − xj | ≤

|xd |

2

}

.

Lemma

For x ∈ R
d , xd large, there exists a (rapidly) decreasing, positive

sequence (∆n(xd)), such that

dens(Tn−1 \ Tn, Tn−1 ∩ Q(x)) ≤ ∆n(xd).
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Heuristic principle of the proof meas(I(Sin)) > 0

For A, B ⊂ R
d measurable we denote the density of A in B by

dens(A, B) :=
meas(A ∩ B)

meas(B)
.

Denote the axis parallel cube around x with edges of length |xd | by

Q(x) :=

{

y ∈ R
d : |yj − xj | ≤

|xd |

2

}

.

Lemma

For x ∈ R
d , xd large, there exists a (rapidly) decreasing, positive

sequence (∆n(xd)), such that

dens(Tn−1 \ Tn, Tn−1 ∩ Q(x)) ≤ ∆n(xd).

Then dens(Tn, Tn−1 ∩ Q(x)) ≥ 1 − ∆n(xd).
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Heuristic principle of the proof meas(I(Sin)) > 0

For A, B ⊂ R
d measurable we denote the density of A in B by

dens(A, B) :=
meas(A ∩ B)

meas(B)
.

Denote the axis parallel cube around x with edges of length |xd | by

Q(x) :=

{

y ∈ R
d : |yj − xj | ≤

|xd |

2

}

.

Lemma

For x ∈ R
d , xd large, there exists a (rapidly) decreasing, positive

sequence (∆n(xd)), such that

dens(Tn−1 \ Tn, Tn−1 ∩ Q(x)) ≤ ∆n(xd).

Then dens(Tn, Tn−1 ∩ Q(x)) ≥ 1 − ∆n(xd). Obtain that

dens(T , T0 ∩ Q(x) ≥
∞
∏

n=1

(1 − ∆n(xd)) > 0

and thus meas(T ) > 0.
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Dynamical behaviour of quasiregular sine

Schubert showed the following result:
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Theorem (Schubert 2008)

Let H be a horizontal strip of width 2π. Then H \ I(sinh) has finite area.
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Dynamical behaviour of quasiregular sine

Schubert showed the following result:

Theorem (Schubert 2008)

Let H be a horizontal strip of width 2π. Then H \ I(sinh) has finite area.

In the case of the quasiregular analogue of sine we get the following
analogue of this result:

Theorem 2

Let Tr be a tract of Sin. Then Tr \I(Sin) has finite measure.
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Sketch of proof meas(Tr \I(Sin)) < ∞

To prove this, we show that the initial tract Tr minus the set T has finite
measure.
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Sketch of proof meas(Tr \I(Sin)) < ∞

To prove this, we show that the initial tract Tr minus the set T has finite
measure. We get the following estimate:

Lemma

Let x ∈ R
d with xd large. Then

meas(Tr \T ∩ Q(x)) ≤ xdδ(xd) + C · xd

(

1 −
∞
∏

n=1

(1 − ∆n(xd))

)

,

where δ is an exponentially decreasing function and C is a positive
constant.
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Sketch of proof meas(Tr \I(Sin)) < ∞

To prove this, we show that the initial tract Tr minus the set T has finite
measure. We get the following estimate:

Lemma

Let x ∈ R
d with xd large. Then

meas(Tr \T ∩ Q(x)) ≤ xdδ(xd) + C · xd

(

1 −
∞
∏

n=1

(1 − ∆n(xd))

)

,

where δ is an exponentially decreasing function and C is a positive
constant.

The first summand estimates the measure of S in Q(x) ∩ Tr, the second
summand estimates the measure of L \ T in Q(x) ∩ Tr.
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Sketch of proof meas(Tr \I(Sin)) < ∞

To prove this, we show that the initial tract Tr minus the set T has finite
measure. We get the following estimate:

Lemma

Let x ∈ R
d with xd large. Then

meas(Tr \T ∩ Q(x)) ≤ xdδ(xd) + C · xd

(

1 −
∞
∏

n=1

(1 − ∆n(xd))

)

,

where δ is an exponentially decreasing function and C is a positive
constant.

The first summand estimates the measure of S in Q(x) ∩ Tr, the second
summand estimates the measure of L \ T in Q(x) ∩ Tr.
Note that by making xd larger, the estimate gets substantially better.
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Sketch of proof meas(Tr \I(Sin)) < ∞

To prove this, we show that the initial tract Tr minus the set T has finite
measure. We get the following estimate:

Lemma

Let x ∈ R
d with xd large. Then

meas(Tr \T ∩ Q(x)) ≤ xdδ(xd) + C · xd

(

1 −
∞
∏

n=1

(1 − ∆n(xd))

)

,

where δ is an exponentially decreasing function and C is a positive
constant.

The first summand estimates the measure of S in Q(x) ∩ Tr, the second
summand estimates the measure of L \ T in Q(x) ∩ Tr.
Note that by making xd larger, the estimate gets substantially better.

Now we cover the initial tract with cubes Q
(

y (j)
)

, y (j) ∈ R
d , in the

following way:
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Sketch of proof meas(Tr \I(Sin)) < ∞

Q
(

y (1)
)
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Sketch of proof meas(Tr \I(Sin)) < ∞

Q
(

y (1)
)

Q
(

y (2)
)
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Sketch of proof meas(Tr \I(Sin)) < ∞

Q
(

y (1)
)

Q
(

y (2)
)

Q
(

y (3)
)
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Qr power mapping based on qr sine

Theorem (Hemke 2005)

Let g(z) = cosh(z3). Then the non-escaping set of g has finite measure.
In particular,

0 < meas(Ic(g)) < ∞.
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In particular,

0 < meas(Ic(g)) < ∞.

To generalize this result for quasiregular maps, we first need to think
about a suitable quasiregular power mapping.
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Qr power mapping based on qr sine

Theorem (Hemke 2005)

Let g(z) = cosh(z3). Then the non-escaping set of g has finite measure.
In particular,

0 < meas(Ic(g)) < ∞.

To generalize this result for quasiregular maps, we first need to think
about a suitable quasiregular power mapping. For z ∈ C \ [0, ∞) we have

zm = exp(m log z),

with the branch log : C \ [0, ∞) → {z ∈ C : 0 < Im z < 2π} of the
inverse of exponential map.
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Qr power mapping based on qr sine

Theorem (Hemke 2005)

Let g(z) = cosh(z3). Then the non-escaping set of g has finite measure.
In particular,

0 < meas(Ic(g)) < ∞.

To generalize this result for quasiregular maps, we first need to think
about a suitable quasiregular power mapping. For z ∈ C \ [0, ∞) we have

zm = exp(m log z),

with the branch log : C \ [0, ∞) → {z ∈ C : 0 < Im z < 2π} of the
inverse of exponential map.
Mayer uses this approach to construct quasiregular power mappings
based on Zorich maps.
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Qr power mapping based on qr sine

We want to consider a different power mapping based on a slightly
modified version of the quasiregular sine.
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We want to consider a different power mapping based on a slightly
modified version of the quasiregular sine.

Definition

We call the map

Cos : Rd → R
d Cos(x) = Sin(x − (1, ..., 1, 0))

quasiregular cosine.

Theorem 1 and 2 hold for λ Cos, λ > 0 with the same proofs.

S. Vogel (University of Kiel) Measure of the escaping set 12 March 2015 16 / 20



Qr power mapping based on qr sine Construction of Pm
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Qr power mapping based on qr sine Construction of Pm

Cos−1
0

Cos−1
0 : {x ∈ R

d : xd ≥ 0} → [0, 2]d−1 × [0, ∞)
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Main result

We call

Pm : Rd → R
d , Pm(x) =







Cos ◦hm ◦ Cos−1
0 (x) for x ∈ H

+

Cos ◦hm ◦ Cos−1
0 (x) for x ∈ H

−

quasiregular power mapping, where

x = (x1, ..., xd ) = (x1, ..., xd−1, −xd)

denotes the reflection at the hyperplane R
d−1 × {0} .
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Theorem 3

For m ≥ d + 1 we get, that meas (Ic(Cos ◦Pm)) < ∞.
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0 (x) for x ∈ H

−

quasiregular power mapping, where

x = (x1, ..., xd ) = (x1, ..., xd−1, −xd)

denotes the reflection at the hyperplane R
d−1 × {0} .

Theorem 3

For m ≥ d + 1 we get, that meas (Ic(Cos ◦Pm)) < ∞.

For m ≤ d we get meas (Ic(Cos ◦Pm)) = ∞ or meas (Ic (Cos ◦Pm)) = 0,
depending on the initial bi-Lipschitz map h.
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Idea of proof meas (Ic (Cos ◦Pm)) < ∞ for m ≥ d + 1

R
d

R
d

R
d

R
d

Cos ◦hm

hm hm

hm ◦ Cos
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Idea of proof meas (Ic (Cos ◦Pm)) < ∞ for m ≥ d + 1

R
d

R
d

R
d

R
d

R
d

R
d

Pm

Cos ◦Pm

Cos ◦hm

Pm

hm hm

hm ◦ Cos

Show that P−1
m (Ic (Cos ◦hm)) has finite measure by using theorem 2 and

the fact, that Pm has degree md−1.

S. Vogel (University of Kiel) Measure of the escaping set 12 March 2015 19 / 20



Thank you very much for your attention!
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