On a quasiregular map with non-escaping set of finite measure

Sebastian Vogel

Christian-Albrechts-Universität zu Kiel

London, 12 March 2015

3 Heuristic principle of the proof

Heuristic principle of the proof

Heuristic principle of the proof

For $G \subset \mathbb{C}$ open, a function $f: G \to \mathbb{C}$ is holomorphic, if and only if

• f is C^1 in the real sense and

•
$$\|f'(z)\|^2 = J_f(z)$$
 for all $z \in G$,

where J_f denotes the Jacobian determinant of f.

For $G \subset \mathbb{C}$ open, a function $f: G \to \mathbb{C}$ is holomorphic, if and only if

- f is C^1 in the real sense and
- $\|f'(z)\|^2 = J_f(z)$ for all $z \in G$,

where J_f denotes the Jacobian determinant of f. Hence holomorphic functions map infinitesimal small circles to infinitesimal small circles.

For $G \subset \mathbb{C}$ open, a function $f: G \to \mathbb{C}$ is holomorphic, if and only if

- f is C^1 in the real sense and
- $\|f'(z)\|^2 = J_f(z)$ for all $z \in G$,

where J_f denotes the Jacobian determinant of f. Hence holomorphic functions map infinitesimal small circles to infinitesimal small circles.

We can easily generalise this definition to higher dimensions. But if we take $G \subset \mathbb{R}^d$ open and $f : G \to \mathbb{R}^d$ satisfying

• f is C^1 in the real sense and

•
$$\|Df(x)\|^d = J_f(x)$$
 for all $x \in G$,

then f is either constant or a sense preserving Möbius transformation.

In order to get a more interesting class of functions, we relax the conditions in the following way:

In order to get a more interesting class of functions, we relax the conditions in the following way:

Definition

A continuous function $f : \mathbb{R}^d \to \mathbb{R}^d$ is called *quasiregular*, if

•
$$f \in W^1_{d,loc}(\mathbb{R}^d)$$

• there exists $K \ge 1$, such that $\|Df(x)\|^d \le KJ_f(x)$ a.e.,

where $W^1_{d,loc}(\mathbb{R}^d)$ denotes the set of all functions $f = (f_1, \ldots, f_d) : U \to \mathbb{R}^d$, for which the weak partial first order derivatives $\partial_k f_i$ exist and are locally in L^d .

In order to get a more interesting class of functions, we relax the conditions in the following way:

Definition

A continuous function $f : \mathbb{R}^d \to \mathbb{R}^d$ is called *quasiregular*, if

•
$$f \in W^1_{d,loc}(\mathbb{R}^d)$$

• there exists $K \ge 1$, such that $\|Df(x)\|^d \le KJ_f(x)$ a.e.,

where $W^1_{d,loc}(\mathbb{R}^d)$ denotes the set of all functions $f = (f_1, \ldots, f_d) : U \to \mathbb{R}^d$, for which the weak partial first order derivatives $\partial_k f_i$ exist and are locally in L^d .

Hence f maps infinitesimal small balls to infinitesimal small ellipsoids with bounded eccentricity.

• Quasiregular maps are differentiable almost everywhere.

- Quasiregular maps are differentiable almost everywhere.
- Non-constant quasiregular maps are open and discrete.

- Quasiregular maps are differentiable almost everywhere.
- Non-constant quasiregular maps are open and discrete.
- The composition of two quasiregular maps is again quasiregular, but in general the dilatation grows.

- Quasiregular maps are differentiable almost everywhere.
- Non-constant quasiregular maps are open and discrete.
- The composition of two quasiregular maps is again quasiregular, but in general the dilatation grows.
- There are analogues of Picard's and Montel's theorem, but for Montel's analogue we need that the iterates are uniformly quasiregular.

- Quasiregular maps are differentiable almost everywhere.
- Non-constant quasiregular maps are open and discrete.
- The composition of two quasiregular maps is again quasiregular, but in general the dilatation grows.
- There are analogues of Picard's and Montel's theorem, but for Montel's analogue we need that the iterates are uniformly quasiregular.
- There is no obvious definition of the Julia set of non-uniformly quasiregular maps.

- Quasiregular maps are differentiable almost everywhere.
- Non-constant quasiregular maps are open and discrete.
- The composition of two quasiregular maps is again quasiregular, but in general the dilatation grows.
- There are analogues of Picard's and Montel's theorem, but for Montel's analogue we need that the iterates are uniformly quasiregular.
- There is no obvious definition of the Julia set of non-uniformly quasiregular maps.
- However, the escaping set

$$I(f) := \left\{ x \in \mathbb{R}^d : \|f^n(x)\| \to \infty \text{ for } n \to \infty
ight\}$$

is still easy to define.

 \mathbb{R}^{d}

 \mathbb{R}^{d}

There exists a representation of \mathbb{R}^d as a union of hairs (i.e. injective curves to ∞) with the following properties:

There exists a representation of \mathbb{R}^d as a union of hairs (i.e. injective curves to ∞) with the following properties:

• the intersection of two hairs is either empty or consists of the common endpoint;

There exists a representation of \mathbb{R}^d as a union of hairs (i.e. injective curves to ∞) with the following properties:

- the intersection of two hairs is either empty or consists of the common endpoint;
- the union of the hairs without their endpoints has Hausdorff dimension 1.

There exists a representation of \mathbb{R}^d as a union of hairs (i.e. injective curves to ∞) with the following properties:

- the intersection of two hairs is either empty or consists of the common endpoint;
- the union of the hairs without their endpoints has Hausdorff dimension 1.

This representation is defined by the dynamics of the (locally expanding) map $\lambda \operatorname{Sin}$, λ sufficiently large (depending on the bi-Lipschitz map h).

There exists a representation of \mathbb{R}^d as a union of hairs (i.e. injective curves to ∞) with the following properties:

- the intersection of two hairs is either empty or consists of the common endpoint;
- the union of the hairs without their endpoints has Hausdorff dimension 1.

This representation is defined by the dynamics of the (locally expanding) map $\lambda \operatorname{Sin}$, λ sufficiently large (depending on the bi-Lipschitz map h).

Theorem (Fletcher and Nicks 2012)

For λ sufficiently large, the periodic points of $f := \lambda \operatorname{Sin} \operatorname{are} \operatorname{dense} \operatorname{in} \mathbb{R}^d$.

There exists a representation of \mathbb{R}^d as a union of hairs (i.e. injective curves to ∞) with the following properties:

- the intersection of two hairs is either empty or consists of the common endpoint;
- the union of the hairs without their endpoints has Hausdorff dimension 1.

This representation is defined by the dynamics of the (locally expanding) map $\lambda \operatorname{Sin}$, λ sufficiently large (depending on the bi-Lipschitz map h).

Theorem (Fletcher and Nicks 2012)

For λ sufficiently large, the periodic points of $f := \lambda \operatorname{Sin} \operatorname{are} \operatorname{dense} \operatorname{in} \mathbb{R}^d$. Furthermore, f has the blowing-up property everywhere in \mathbb{R}^d , that is

$$\bigcup_{k=0}^{\infty} f^k(U) = \mathbb{R}^d$$
, for any non-empty open set $U \subset \mathbb{R}^d$.

For arbitrary functions in the (complex) sine family, we know the following result by McMullen:

For arbitrary functions in the (complex) sine family, we know the following result by McMullen:

Theorem (McMullen 1987)

For $g(z) = \lambda \sin(z) + \mu$, $\lambda \neq 0$, the set I(g) has positive area.

For arbitrary functions in the (complex) sine family, we know the following result by McMullen:

Theorem (McMullen 1987)

For $g(z) = \lambda \sin(z) + \mu$, $\lambda \neq 0$, the set I(g) has positive area.

We get the following analogue of this theorem:
For arbitrary functions in the (complex) sine family, we know the following result by McMullen:

Theorem (McMullen 1987)

For $g(z) = \lambda \sin(z) + \mu$, $\lambda \neq 0$, the set I(g) has positive area.

We get the following analogue of this theorem:

Theorem 1

The escaping set of Sin has positive measure, i.e.

```
meas(I(Sin)) > 0,
```

where meas denotes the *d*-dimensional Lebesgue measure.

For arbitrary functions in the (complex) sine family, we know the following result by McMullen:

Theorem (McMullen 1987)

For $g(z) = \lambda \sin(z) + \mu$, $\lambda \neq 0$, the set I(g) has positive area.

We get the following analogue of this theorem:

Theorem 1

The escaping set of Sin has positive measure, i.e.

```
meas(I(Sin)) > 0,
```

where meas denotes the *d*-dimensional Lebesgue measure.

Note that Sin does not need to be locally expanding.

Put

$$L := \left\{ x \in \mathbb{R}^d : |\operatorname{Sin}_d(x)| \ge \exp\left(\frac{1}{2}|x_d|\right) \right\}$$

$$L := \left\{ x \in \mathbb{R}^d : |\operatorname{Sin}_d(x)| \ge \exp\left(\frac{1}{2}|x_d|\right) \right\}$$

and

Put

$$\mathcal{T} := \{x \in L : \mathsf{Sin}^n(x) \in L \text{ for all } n \in \mathbb{N}\}.$$

$$L := \left\{ x \in \mathbb{R}^d : |\operatorname{Sin}_d(x)| \ge \exp\left(\frac{1}{2}|x_d|\right) \right\}$$

and

Put

$$\mathcal{T}:=\left\{x\in L:\mathsf{Sin}^n(x)\in L ext{ for all } n\in\mathbb{N}
ight\}.$$

Then $\mathcal{T} \subset I(Sin)$.

$$L := \left\{ x \in \mathbb{R}^d : |\operatorname{Sin}_d(x)| \ge \exp\left(\frac{1}{2}|x_d|\right) \right\}$$

and

Put

$$\mathcal{T} := \left\{ x \in L : \mathsf{Sin}^n(x) \in L \text{ for all } n \in \mathbb{N}
ight\}.$$

Then $\mathcal{T} \subset I(Sin)$. For $n \geq 0$ denote by

$$\mathcal{T}_n := \{x \in L : \mathsf{Sin}^k(x) \in L \text{ for } 0 \le k \le n\}$$

the set of points, which stay in L for at least n iterations.

$$L := \left\{ x \in \mathbb{R}^d : |\operatorname{Sin}_d(x)| \ge \exp\left(\frac{1}{2}|x_d|\right) \right\}$$

and

Put

$$\mathcal{T} := \left\{ x \in L : \mathsf{Sin}^n(x) \in L \text{ for all } n \in \mathbb{N}
ight\}.$$

Then $\mathcal{T} \subset I(Sin)$. For $n \geq 0$ denote by

$$\mathcal{T}_n := \{x \in L : \operatorname{Sin}^k(x) \in L \text{ for } 0 \le k \le n\}$$

the set of points, which stay in L for at least n iterations. Finally put

$$S := \mathbb{R}^d \setminus L$$

Denote the axis parallel cube around x with edges of length $|x_d|$ by

$$Q(x) := \left\{ y \in \mathbb{R}^d : |y_j - x_j| \leq \frac{|x_d|}{2}
ight\}.$$

Denote the axis parallel cube around x with edges of length $|x_d|$ by

$$Q(x):=\left\{y\in \mathbb{R}^d: |y_j-x_j|\leq rac{|x_d|}{2}
ight\}.$$

Lemma

For $x \in \mathbb{R}^d$, x_d large, there exists a (rapidly) decreasing, positive sequence $(\Delta_n(x_d))$, such that

$$\operatorname{dens}(\mathcal{T}_{n-1} \setminus \mathcal{T}_n, \mathcal{T}_{n-1} \cap Q(x)) \leq \Delta_n(x_d).$$

Denote the axis parallel cube around x with edges of length $|x_d|$ by

$$Q(x):=\left\{y\in \mathbb{R}^d: |y_j-x_j|\leq rac{|x_d|}{2}
ight\}.$$

Lemma

For $x \in \mathbb{R}^d$, x_d large, there exists a (rapidly) decreasing, positive sequence $(\Delta_n(x_d))$, such that

$$\operatorname{dens}(\mathcal{T}_{n-1} \setminus \mathcal{T}_n, \mathcal{T}_{n-1} \cap Q(x)) \leq \Delta_n(x_d).$$

Then dens $(\mathcal{T}_n, \mathcal{T}_{n-1} \cap Q(x)) \ge 1 - \Delta_n(x_d)$.

Denote the axis parallel cube around x with edges of length $|x_d|$ by

$$Q(x):=\left\{y\in \mathbb{R}^d: |y_j-x_j|\leq rac{|x_d|}{2}
ight\}.$$

Lemma

For $x \in \mathbb{R}^d$, x_d large, there exists a (rapidly) decreasing, positive sequence $(\Delta_n(x_d))$, such that

$$\operatorname{dens}(\mathcal{T}_{n-1} \setminus \mathcal{T}_n, \mathcal{T}_{n-1} \cap Q(x)) \leq \Delta_n(x_d).$$

Then dens $(\mathcal{T}_n, \mathcal{T}_{n-1} \cap Q(x)) \ge 1 - \Delta_n(x_d)$. Obtain that

$$\mathsf{dens}(\mathcal{T},\mathcal{T}_0\cap Q(x)\geq \prod_{n=1}^\infty (1-\Delta_n(x_d))>0$$

and thus meas(\mathcal{T}) > 0.

Schubert showed the following result:

Schubert showed the following result:

Theorem (Schubert 2008)

Let *H* be a horizontal strip of width 2π . Then $H \setminus I(\sinh)$ has finite area.

Schubert showed the following result:

Theorem (Schubert 2008)

Let *H* be a horizontal strip of width 2π . Then $H \setminus I(\sinh)$ has finite area.

In the case of the quasiregular analogue of sine we get the following analogue of this result:

Theorem 2

Let Tr be a tract of Sin. Then $Tr \setminus I(Sin)$ has finite measure.

To prove this, we show that the initial tract Tr minus the set $\mathcal T$ has finite measure.

Lemma

Let $x \in \mathbb{R}^d$ with x_d large. Then

$$ext{meas}(ext{Tr} \setminus \mathcal{T} \cap Q(x)) \leq x_d \delta(x_d) + C \cdot x_d \left(1 - \prod_{n=1}^\infty \left(1 - \Delta_n(x_d)
ight)
ight),$$

where δ is an exponentially decreasing function and C is a positive constant.

Lemma

Let $x \in \mathbb{R}^d$ with x_d large. Then

$$ext{meas}(ext{Tr} \setminus \mathcal{T} \cap Q(x)) \leq x_d \delta(x_d) + C \cdot x_d \left(1 - \prod_{n=1}^{\infty} (1 - \Delta_n(x_d))\right),$$

where δ is an exponentially decreasing function and C is a positive constant.

The first summand estimates the measure of S in $Q(x) \cap \text{Tr}$, the second summand estimates the measure of $L \setminus T$ in $Q(x) \cap \text{Tr}$.

Lemma

Let $x \in \mathbb{R}^d$ with x_d large. Then

$$\mathsf{meas}(\mathsf{Tr} \setminus \mathcal{T} \cap Q(x)) \leq x_d \delta(x_d) + C \cdot x_d \left(1 - \prod_{n=1}^{\infty} (1 - \Delta_n(x_d)) \right),$$

where δ is an exponentially decreasing function and C is a positive constant.

The first summand estimates the measure of S in $Q(x) \cap \text{Tr}$, the second summand estimates the measure of $L \setminus T$ in $Q(x) \cap \text{Tr}$. Note that by making x_d larger, the estimate gets substantially better.

Lemma

Let $x \in \mathbb{R}^d$ with x_d large. Then

$$\mathsf{meas}(\mathsf{Tr} \setminus \mathcal{T} \cap Q(x)) \leq x_d \delta(x_d) + C \cdot x_d \left(1 - \prod_{n=1}^{\infty} (1 - \Delta_n(x_d)) \right),$$

where δ is an exponentially decreasing function and C is a positive constant.

The first summand estimates the measure of S in $Q(x) \cap \text{Tr}$, the second summand estimates the measure of $L \setminus \mathcal{T}$ in $Q(x) \cap \text{Tr}$. Note that by making x_d larger, the estimate gets substantially better. Now we cover the initial tract with cubes $Q(y^{(j)})$, $y^{(j)} \in \mathbb{R}^d$, in the following way:

 $Q \left(y^{(1)} \right)$

Let $g(z) = \cosh(z^3)$. Then the non-escaping set of g has finite measure. In particular,

 $0 < \max(I^c(g)) < \infty.$

Let $g(z) = \cosh(z^3)$. Then the non-escaping set of g has finite measure. In particular,

 $0 < \max(I^c(g)) < \infty.$

To generalize this result for quasiregular maps, we first need to think about a suitable quasiregular power mapping.

Let $g(z) = \cosh(z^3)$. Then the non-escaping set of g has finite measure. In particular,

 $0 < \operatorname{meas}(I^{c}(g)) < \infty.$

To generalize this result for quasiregular maps, we first need to think about a suitable quasiregular power mapping. For $z \in \mathbb{C} \setminus [0, \infty)$ we have

$$z^m = \exp(m\log z),$$

with the branch log: $\mathbb{C} \setminus [0, \infty) \rightarrow \{z \in \mathbb{C} : 0 < \text{Im } z < 2\pi\}$ of the inverse of exponential map.

Let $g(z) = \cosh(z^3)$. Then the non-escaping set of g has finite measure. In particular,

 $0 < \operatorname{meas}(I^{c}(g)) < \infty.$

To generalize this result for quasiregular maps, we first need to think about a suitable quasiregular power mapping. For $z \in \mathbb{C} \setminus [0, \infty)$ we have

$$z^m = \exp(m\log z),$$

with the branch log: $\mathbb{C} \setminus [0, \infty) \rightarrow \{z \in \mathbb{C} : 0 < \text{Im } z < 2\pi\}$ of the inverse of exponential map.

Mayer uses this approach to construct quasiregular power mappings based on Zorich maps.

We want to consider a different power mapping based on a slightly modified version of the quasiregular sine.

We want to consider a different power mapping based on a slightly modified version of the quasiregular sine.

Definition

We call the map

$$\mathsf{Cos}: \mathbb{R}^d \to \mathbb{R}^d \quad \mathsf{Cos}(x) = \mathsf{Sin}(x - (1, ..., 1, 0))$$

quasiregular cosine.

We want to consider a different power mapping based on a slightly modified version of the quasiregular sine.

Definition

We call the map

$$\mathsf{Cos}: \mathbb{R}^d \to \mathbb{R}^d \quad \mathsf{Cos}(x) = \mathsf{Sin}(x - (1, ..., 1, 0))$$

quasiregular cosine.

Theorem 1 and 2 hold for $\lambda \cos$, $\lambda > 0$ with the same proofs.

$$\operatorname{Cos}_{0}^{-1}$$
: $\{x \in \mathbb{R}^{d} : x_{d} \ge 0\} \to [0, 2]^{d-1} \times [0, \infty)$

$$\begin{aligned} & \operatorname{Cos}_{0}^{-1} \colon \{ x \in \mathbb{R}^{d} : x_{d} \geq 0 \} \to [0,2]^{d-1} \times [0,\infty) \\ & h_{m} \colon [0,2]^{d-1} \times [0,\infty) \to [0,2m]^{d-1} \times [0,\infty), \quad h_{m}(x) = mx \end{aligned}$$

$$\begin{aligned} & \operatorname{Cos}_{0}^{-1} \colon \{ x \in \mathbb{R}^{d} : x_{d} \geq 0 \} \to [0,2]^{d-1} \times [0,\infty) \\ & h_{m} \colon [0,2]^{d-1} \times [0,\infty) \to [0,2m]^{d-1} \times [0,\infty), \quad h_{m}(x) = mx \end{aligned}$$

$$\begin{aligned} & \operatorname{Cos}_{0}^{-1} \colon \{ x \in \mathbb{R}^{d} : x_{d} \geq 0 \} \to [0,2]^{d-1} \times [0,\infty) \\ & h_{m} \colon [0,2]^{d-1} \times [0,\infty) \to [0,2m]^{d-1} \times [0,\infty), \quad h_{m}(x) = mx \end{aligned}$$

$$\begin{aligned} & \mathsf{Cos}_0^{-1} \colon \{ x \in \mathbb{R}^d : x_d \ge 0 \} \to [0,2]^{d-1} \times [0,\infty) \\ & h_m \colon [0,2]^{d-1} \times [0,\infty) \to [0,2m]^{d-1} \times [0,\infty), \quad h_m(x) = mx \end{aligned}$$

$$\begin{aligned} & \operatorname{Cos}_{0}^{-1} \colon \{ x \in \mathbb{R}^{d} : x_{d} \geq 0 \} \to [0,2]^{d-1} \times [0,\infty) \\ & h_{m} \colon [0,2]^{d-1} \times [0,\infty) \to [0,2m]^{d-1} \times [0,\infty), \quad h_{m}(x) = mx \end{aligned}$$

$$\begin{aligned} & \operatorname{Cos}_{0}^{-1} \colon \{ x \in \mathbb{R}^{d} : x_{d} \geq 0 \} \to [0,2]^{d-1} \times [0,\infty) \\ & h_{m} \colon [0,2]^{d-1} \times [0,\infty) \to [0,2m]^{d-1} \times [0,\infty), \quad h_{m}(x) = mx \end{aligned}$$

We call

$$P_m \colon \mathbb{R}^d \to \mathbb{R}^d, \quad P_m(x) = \left\{ egin{array}{c} \cos \circ h_m \circ \cos_0^{-1}(x) \ ext{for } x \in \mathbb{H}^+ \ \overline{\cos \circ h_m \circ \cos_0^{-1}(\overline{x})} \ ext{for } x \in \mathbb{H}^- \end{array}
ight.$$

quasiregular power mapping, where

$$\overline{x} = \overline{(x_1, ..., x_d)} = (x_1, ..., x_{d-1}, -x_d)$$

denotes the reflection at the hyperplane $\mathbb{R}^{d-1} imes \{0\}$.

We call

$$P_m \colon \mathbb{R}^d \to \mathbb{R}^d, \quad P_m(x) = \left\{ egin{array}{c} \cos \circ h_m \circ \cos_0^{-1}(x) \ ext{for } x \in \mathbb{H}^+ \ \overline{\cos \circ h_m \circ \cos_0^{-1}(\overline{x})} \ ext{for } x \in \mathbb{H}^- \end{array}
ight.$$

quasiregular power mapping, where

$$\overline{x} = \overline{(x_1, ..., x_d)} = (x_1, ..., x_{d-1}, -x_d)$$

denotes the reflection at the hyperplane $\mathbb{R}^{d-1} imes \{0\}$.

Theorem 3

For $m \ge d+1$ we get, that meas $(I^c(\cos \circ P_m)) < \infty$.

We call

$$P_m \colon \mathbb{R}^d \to \mathbb{R}^d, \quad P_m(x) = \left\{ egin{array}{c} \cos \circ h_m \circ \cos_0^{-1}(x) \ ext{for } x \in \mathbb{H}^+ \ \overline{\cos \circ h_m \circ \cos_0^{-1}(\overline{x})} \ ext{for } x \in \mathbb{H}^- \end{array}
ight.$$

quasiregular power mapping, where

$$\overline{x} = \overline{(x_1, ..., x_d)} = (x_1, ..., x_{d-1}, -x_d)$$

denotes the reflection at the hyperplane $\mathbb{R}^{d-1} imes \{0\}$.

Theorem 3

For $m \ge d+1$ we get, that meas $(I^c(\cos \circ P_m)) < \infty$.

For $m \leq d$ we get meas $(I^{c}(\cos \circ P_{m})) = \infty$ or meas $(I^{c}(\cos \circ P_{m})) = 0$, depending on the initial bi-Lipschitz map h.

Show that $P_m^{-1}(I^c(\cos \circ h_m))$ has finite measure by using theorem 2 and the fact, that P_m has degree m^{d-1} .

Thank you very much for your attention!