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Introduction Compositions of Möbius Transformations

Compositions of Möbius Transformations
A Möbius transformation is a function f : Ĉ→ Ĉ of the form

f (z) =
az + b
cz + d

where a,b, c,d ∈ C and ad − bc 6= 0.

The set of all Möbius
transformations,M, is the set of conformal automorphisms of Ĉ.

Definition
Given a set F of Möbius transformations, we define a composition
sequence drawn from F to be a sequence of Möbius transformations
Fn such that

Fn = f1 ◦ f2 ◦ · · · ◦ fn

where each fi ∈ F .

Note the order of composition.
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Definition
Given a set F of Möbius transformations, we define a composition
sequence drawn from F to be a sequence of Möbius transformations
Fn such that

Fn = f1 ◦ f2 ◦ · · · ◦ fn

where each fi ∈ F .

Note the order of composition.

Mairi Walker (The Open University) Geometry of Gaussian Integer Continued Fractions 12th March 2015 3 / 25



Introduction Compositions of Möbius Transformations

Compositions of Möbius Transformations
A Möbius transformation is a function f : Ĉ→ Ĉ of the form
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Introduction Picard Composition Sequences

Picard Composition Sequences
Let F denote the set of all Möbius transformations

fa(z) =
az + 1

z
= a +

1
z
,

where a ∈ Z[i], that is, a is a Gaussian integer.

Definition
We define a Picard composition sequence to be a composition
sequence drawn from F .

The functions fa generate the Picard group, G, the group of Möbius
transformations

f (z) =
az + b
cz + d

with a,b, c,d ∈ Z[i] and |ad − bc| = 1. So each Fn lies in G. This
group will be important later.
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Introduction Picard Composition Sequences

Continued Fractions

Notice that

Fn(z) = fa1 ◦ fa2 ◦ fa3 ◦ . . . fan(z)

= a1 +
1

a2 +
1

a3 + · · ·+
1

an +
1
z

,

so the values Fn(∞) are the convergents of some continued fraction
with entries equal to 1 ‘along the top’ and Gaussian integers ‘along the
bottom’.
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Introduction Picard Composition Sequences

Gaussian Integer Continued Fractions

Definition
A finite Gaussian integer continued fraction is a continued fraction of
the form

[a1,a2,a3, . . . ,an] = a1 +
1

a2 +
1

a3 + · · ·+
1
an

,

where ai ∈ Z[i] for i = 1,2, . . . ,n.

An infinite Gaussian integer continued fraction is defined to be the limit

[a1,a2, . . . ] = lim
i→∞

[a1,a2, . . . ,ai ],

of its sequence of convergents.
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Introduction Picard Composition Sequences

Convergence of Gaussian Integer Continued Fractions

The question

“When does a Picard composition sequence Fn = fa1 ◦ fa2 ◦ · · · ◦ fan

converge at∞?"

can be reformulated as the question

“When does a Gaussian integer continued fraction [a1,a2, . . . ,an]
converge?"

Literature on this topic generally restricts to certain classes of
Gaussian integer continued fractions, such as those obtained using
algorithms. See, for example, Dani and Nogueira [2].

Question: Can we find a more general condition for convergence that
can be applied to all Gaussian integer continued fractions?
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Hyperbolic Geometry and Continued Fractions The Picard-Farey graph

The Geometry of the Picard Group

Recall that the elements Fn of a Picard composition sequence are
elements of the Picard group, G, which is a group of conformal
automorphisms of Ĉ.

The action of G can be extended via the Poincaré extension to an
action on R3 ∪ {∞}, which preserves {(x , y , z) ∈ R3 | z > 0}.

In fact, G is a Kleinian group - a discrete group of isometries of the
hyperbolic upper half-space H3. This allows us to form the
Picard-Farey graph.
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Hyperbolic Geometry and Continued Fractions The Picard-Farey graph

The Picard-Farey Graph

Definition
The Picard-Farey graph, G, is formed as the orbit of the vertical line
segment L with endpoints 0 and∞ under the Picard group.

It is a three-dimensional analogue of the Farey graph.

Hecke graphs in the plane

Figure 1: q = 3

1
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Hyperbolic Geometry and Continued Fractions The Picard-Farey graph

Properties of the Picard-Farey graph

• The Picard-Farey graph is the 1-skeleton of a tessellation of H3 by
ideal hyperbolic octahedra.

• The vertices V (G) are of the form a
c with a, c ∈ Z[i]: they are

precisely those complex numbers with rational real and complex
parts, and∞ itself.

• The edges of G are hyperbolic geodesics. Two vertices a
c and b

d
are neighbours - joined by an edge - in G if and only if
|ad − bc| = 1.

• Elements of G are graph automorphisms of G.
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Hyperbolic Geometry and Continued Fractions The Geometry of Gaussian Integer Continued Fractions

Gaussian Integer Continued Fractions
Recall that

[a1,a2, . . . ,an] = Fn(∞).

It follows that the vertices of G are precisely those numbers that are
convergents of Gaussian integer continued fractions.

Notice that

Fn(0) = Fn−1(fan(0)) = Fn−1

(
an −

1
0

)
= Fn−1(∞),

so Fn−1(∞) and Fn(∞) are neighbours in G.

Theorem
A sequence of vertices∞ = v1, v2, . . . , vn = x forms a path in G if and
only if it consists of the consecutive convergents of a Gaussian integer
continued fraction expansion of x.
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Hyperbolic Geometry and Continued Fractions The Geometry of Gaussian Integer Continued Fractions

Reformulating the Theory of Gaussian Integer
Continued Fractions

The question

“When does a Picard composition sequence Fn = fa1 ◦ fa2 ◦ · · · ◦ fan

converge?"

can be reformulated as the question

“When does a Gaussian integer continued fraction [a1,a2,a3, . . . ,an]
converge?"

which can be reformulated as the question

“When does a path in G with initial vertex∞ converge?"
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Convergence The Integer Case

Integer Continued Fractions

Definition
A finite integer continued fraction is a continued fraction of the form

[a1,a2, . . . ,an] = a1 +
1

a2 +
1

a3 + · · ·+
1
an

,

where ai ∈ Z for i = 1,2, . . . ,n.

An infinite integer continued fraction is defined to be the limit

[a1,a2, . . . ] = lim
i→∞

[a1,a2, . . . ,ai ],

of its sequence of convergents.
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Convergence The Integer Case

Some Known Theorems

Theorem
A continued fraction [a1,a2, . . . ], with ai ∈ R and ai > 0 for i > 1,
converges if and only if

∑∞
i=1 ai diverges.

Theorem (Śleszyński-Pringsheim)
If ai ,bi ∈ R with |bn+1| > |an|+ 1 for all n, then

b1 +
a1

b2 +
a2

b3 + . . .

converges.
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Convergence The Integer Case

The Farey Graph
Let L′ denote the line segment joining 0 to∞ in H2. The Farey graph,
H, is the orbit of L′ under the Modular group.

Hecke graphs in the plane

Figure 1: q = 3

1

Theorem (Beardon, Hockman, Short [1])
A sequence of vertices∞ = v1, v2, . . . , vn = x forms a path in H if and
only if it consists of the consecutive convergents of a Gaussian integer
continued fraction expansion of x.
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Convergence The Integer Case

Paths in the Farey graph

Take, for example, [0,2,1,−3, . . . ]

C1 = 0, C2 =
1
2
, C3 =

1
3
, C4 =

2
7
, . . .
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Convergence The Integer Case

Convergence of Integer Continued Fractions
Theorem
An infinite path in H with vertices∞ = v1, v2, v3, . . . converges to an
irrational number x if and only if the sequence v1, v2, . . . contains no
constant subsequence.

Proof.
=⇒ Clear.

⇐= Assume that {vi} diverges, so it has two accumulation
points, v1 and v2. There is some edge of H, with endpoints u and w
‘separating’ v1 and v2.

Thus the path must pass through one of u or v infinitely many times,
and has a convergent subsequence.

Mairi Walker (The Open University) Geometry of Gaussian Integer Continued Fractions 12th March 2015 17 / 25



Convergence The Integer Case

Convergence of Integer Continued Fractions
Theorem
An infinite path in H with vertices∞ = v1, v2, v3, . . . converges to an
irrational number x if and only if the sequence v1, v2, . . . contains no
constant subsequence.

Proof.
=⇒ Clear. ⇐= Assume that {vi} diverges, so it has two accumulation
points, v1 and v2. There is some edge of H, with endpoints u and w
‘separating’ v1 and v2.

Thus the path must pass through one of u or v infinitely many times,
and has a convergent subsequence.

Mairi Walker (The Open University) Geometry of Gaussian Integer Continued Fractions 12th March 2015 17 / 25



Convergence The Integer Case

Convergence of Integer Continued Fractions
Theorem
An infinite path in H with vertices∞ = v1, v2, v3, . . . converges to an
irrational number x if and only if the sequence v1, v2, . . . contains no
constant subsequence.

Proof.
=⇒ Clear. ⇐= Assume that {vi} diverges, so it has two accumulation
points, v1 and v2. There is some edge of H, with endpoints u and w
‘separating’ v1 and v2.

Thus the path must pass through one of u or v infinitely many times,
and has a convergent subsequence.

Mairi Walker (The Open University) Geometry of Gaussian Integer Continued Fractions 12th March 2015 17 / 25



Convergence The Picard-Farey Case

A Problem
The key property used here is that removing any edge of H separates
it into two connected components.

In the Picard-Farey graph, G, there is no such property: removing any
finite number of edges will not separate G into two connected
components.

Is there a ‘nice’ infinite set that we can use instead?

Along R̂ lies a vertical Farey graph.

Removing it separates G into two connected components.
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Convergence The Picard-Farey Case

The Real Line

Thus any path that crosses R̂ must pass through a vertex lying on the
real line.

Elements of the Picard group are automorphisms of G, so any image
of R̂ has this same property.

Definition
A Farey section is an image of R̂ under an element of G.
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Convergence The Picard-Farey Case

Farey Sections

Farey sections cover Ĉ densely.

Each Farey section has the property that if a path crosses it then it
must pass through it.

If a path crosses a Farey section infinitely many times, then it either
has an accumulation point in that Farey section, or passes through
some vertex of that Farey section infinitely many times.
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Convergence The Picard-Farey Case

Convergence of Gaussian Integer Continued Fractions
Theorem
An infinite path in G with vertices∞ = v1, v2, v3, . . . converges to
x /∈ V (G) if and only if the sequence v1, v2, . . . contains no constant
subsequence and has only finitely many accumulation points.

Proof.
=⇒ Clear.

⇐= Assume that {vi} diverges, so it has two accumulation
points, v1 and v2. There is an infinite family of Farey sections
‘separating’ v1 and v2.

vi either has an accumulation point on each Farey section, or has a
constant subsequence.
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Convergence The Picard-Farey Case

Examples

Do we need the added condition? Can we say that an infinite path in G
with vertices∞ = v1, v2, v3, . . . converges to x /∈ V (G) if and only if the
sequence v1, v2, . . . contains no constant subsequence?

Lemma
There exist paths with no constant subsequence that do not converge.

Proof.
Given z 6= w , choose sequences zi → z and wi → w . Because
removing finitely many edges does not disconnect G, we can construct
a simple path that passes through each zi and wi , and thus has both z
and w as accumulation points.
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Summary Summary

Summary

To summarise:
• Picard composition sequences can be viewed as Gaussian

integer continued fractions, which can in turn be viewed as paths
in the Picard-Farey graph.

• This technique allows us to find and prove a simple condition for
the convergence of Gaussian integer continued fractions, and
hence Picard composition sequences.

Where next?
• What else can we say about Gaussian integer continued fractions

using the Picard-Farey graph?
• Can we use hyperbolic geometry to study the continued fractions

associated to other types of composition sequences?
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Summary Summary

Thanks for listening!

:)
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