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Transcendental self-maps of C∗

Let f : S ⊆ Ĉ → S be holomorphic s.t. Ĉ \ S are essential singularities.
By Picard’s theorem there are three interesting cases:

I S = Ĉ = C ∪ {∞}, the Riemann sphere (rational functions);
I S = C, the complex plane (transcendental entire functions);
I S = C∗ = C \ {0}, the punctured plane.

Holomorphic self-maps of C∗ were first studied in 1953 by Rådström.

Theorem (Bhattacharyya 1969)

Every transcendental function f : C∗ → C∗ is of the form

f (z) = zn exp
(
g(z) + h(1/z)

)
for some n ∈ Z and g , h non-constant entire functions.

Råd53 H. Rådström, On the iteration of analytic functions, Math. Scand. 1 (1953), 85–92.
Bha69 P. Bhattacharyya, Iteration of analytic functions, PhD Thesis (1969), University of Lon-
don, 1969.
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The escaping set of a transcendental entire function

The escaping set of a transcendental entire function f ,

I (f ) := {z ∈ C : f n(z)→∞ as n→∞}

was introduced by Eremenko in 1989.

Theorem (Eremenko 1989, Eremenko & Lyubich 1992)

Let f be a transcendental entire function. Then,
I1. I (f ) ∩ J(f ) 6= ∅;
I2. J(f ) = ∂I (f );
I3. all the components of I (f ) are unbounded;
I4. if f ∈ B, then I (f ) ⊆ J(f ).

Here B denotes the so-called Eremenko-Lyubich class:

B := {f transcendental entire function : sing(f −1) is bounded}.

Ere89 A. Eremenko, On the iteration of entire functions, Dynamical Systems and Ergodic Theory,
Banach Center Publ. 23 (1989), 339-345.
EL92 A. Eremenko, and M. Lyubich Dynamical properties of some classes of entire functions,
Ann. Inst. Fourier (Grenoble) 42 (1992), 989–1020.



The escaping set of a transcendental self-map of C∗

If f is a transcendental self-map of C∗, the escaping set of f is

I (f ) := {z ∈ C∗ : ω(z , f ) ⊆ {0,∞}} ,

where ω(z , f ) :=
⋂

n∈N {f k(z) : k > n}. Then I (f ) contains

I0(f ) := {z ∈ C∗ : f n(z)→ 0 as n→∞} ,
I∞(f ) := {z ∈ C∗ : f n(z)→∞ as n→∞} .

We define the essential itinerary of a point z ∈ I (f ) to be the sequence
e = (en) ∈ {0,∞}N such that

en :=

 0, if |f n(z)| 6 1,

∞, if |f n(z)| > 1,

for all n > 0. The set of points whose essential itinerary is eventually a
shift of e is

Ie(f ) := {z ∈ I (f ) : ∃`, k ∈ N, ∀n > 0, |f n+`(z)| > 1 ⇔ en+k =∞}.

Mar14 D. Martí-Pete, The escaping set of transcendental self-maps of the punctured plane,
arXiv:1412.1032, December 2014.
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Eremenko’s properties

Theorem (Martí-Pete 2014)

Let f be a transcendental self-map of C∗. For each e ∈ {0,∞}N,
I1. Ie(f ) ∩ J(f ) 6= ∅,
I2. J(f ) = ∂Ie(f ), and J(f ) = ∂I (f ),
I3. the connected components of Ie(f ) are unbounded, and hence the

connected components of I (f ) are unbounded,
I4. if f ∈ B∗, then I (f ) ⊆ J(f ).

The analog of class B in C∗ is

B∗ := {f transc. self-map of C∗ : sing(f −1) is bounded away from 0,∞}.

Mar14 D. Martí-Pete, The escaping set of transcendental self-maps of the punctured plane,
arXiv:1412.1032, December 2014.



Escaping Fatou components

Let U be a Fatou component of a transcendental function f :
I U is a wandering domain of f if f m(U) = f n(U) implies m = n.
I U is a Baker domain of period p of f if ∂U contains an essential

singularity α and f np
|U ⇒ α as n→∞. Cowen classified them into

three kinds according to whether f p
|U is eventually conjugated to

I z 7→ λz , λ > 1, on H  U is a hyperbolic Baker domain,
I z 7→ z ± i , on H  U is a simply parabolic Baker domain,
I z 7→ z + 1, on C  U is a doubly parabolic Baker domain.

Baker, Mukhamedshin and Kotus used approximation theory to construct
transcendental self-maps of C∗ with wandering domains (e = 0, ∞, 0∞)
and Baker domains (e = 0, ∞).

Q: Are there escaping Fatou components with any essential itinerary?

Cow81 C.C. Cowen, Iteration and the solution of functional equations for functions analytic in
the unit disk, Trans. Am. Math. Soc. 265 (1981), 69–95.
Bak87 I.N. Baker, Wandering domains for maps of the punctured plane, Ann. Acad. Sci. Fenn.
Ser. A I Math. 12 (1987), no. 2, 191–198.
Kot90 J. Kotus, The domains of normality of holomorphic self-maps of C∗, Ann. Acad. Sci.
Fenn. Ser. A I Math. 15 (1990), no. 2, 329–340.
Muk91 A.N. Mukhamedshin, Mapping the punctured plane with wandering domains, Siberian
Math. J. 32 (1991), no. 2, 337–339.
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Example 1: a wandering domain

The function f (z) = z exp
( sin z

z + 2π
z

)
is a transcendental self-map of C∗

which has a bounded wandering domain escaping to ∞. Note that

f (z) = z + sin z + 2π + o(1) as Re z →∞.



Example 2: hyperbolic Baker domains

For every λ > 1, the function fλ(z) = λz exp(e−z+1/z) is a transcendental
self-map of C∗ which has a hyperbolic Baker domain escaping to∞. Note
that

f (z) ∼ λz as Re z →∞.



Example 3: a doubly parabolic Baker domain

The function f (z) = z exp ((e−z + 1)/z) is a transcendental self-map of
C∗ which has a simply parabolic Baker domain escaping to ∞. Note that

f (z) = z + 1+ o(1) as Re z →∞.



Results

Theorem (Martí-Pete)

For each e ∈ {0,∞}N and n ∈ Z, there exists a transcendental self-map
of C∗, f , such that ind(f ) = n and Ie(f ) contains a wandering domain.

Theorem (Martí-Pete)

For each periodic e ∈ {0,∞}N and n ∈ Z, there exists a transcendental
self-map of C∗, f , such that ind(f ) = n and Ie(f ) contains a Baker
domain, which can be taken to be hyperbolic, simply parabolic or doubly
parabolic.

Remark: We can also construct entire functions with no zeros having
escaping Fatou components (to ∞) of each of these kinds.

Mar D. Martí Pete, Escaping Fatou components of transcendental self-maps of the punctured
plane, in preparation.



Preliminaries on approximation theory

For 0 < α 6 2π, define the sector of angle α

Wα := {z ∈ C : |arg z | 6 α/2}.

Theorem (Arakeljan 1964)

Suppose F ⊆ C is a closed set such that Ĉ \ F is connected and locally
connected at ∞ and F lies in a sector Wα for some 0 < α 6 2π. Suppose
ε(t) is a real function, continuous and positive for t > 0, such that∫ +∞

1
t−(π/α)−1 log ε(t)dt > −∞.

Then every function f : F → C holomorphic on int F and continous on F ,
there is an entire function g such that

|f (z)− g(z)| < ε(|z |), for all z ∈ F .

Hence, if F ⊆Wα with α < π we can take ε(|z |) = O(e−γ|z|) with γ > 0.

Ara64 N. U. Arakeljan, Uniform and asymptotic approximation by entire functions on unbounded
closed sets (Russian), Dokl. Akad. Nauk SSSR 157 (1964), 9–11.
Gai87 D. Gaier, Lectures on complex approximation, translated from the German by Renate
McLaughlin. Birkhäuser Boston, Inc., Boston, MA, 1987.



Sketch of the wandering domain construction

We use Arakeljan’s theorem to construct two entire functions g and h such
that f (z) = zn exp

(
g(z)+h(1/z)

)
has a wandering domain in Ie(f ) which

lies in a sector Wα with 0 < α < π/2.

... ...B− B+ A1 A2 A3A−1A−2
B1 B2B−1B−2

f

f

f

f



Sketch of the Baker domain construction

We treat the hyperbolic case with e =∞0 and ind(f ) = n ∈ Z.

We first construct an entire function f (z) = exp
(
g(z)

)
such that

f (z) ∼ λz as Re z → +∞,

for some λ > 1, and f (Hr ) ⊆ Hr for sufficiently large r . We need

|g(z)− log(λz)| < ε(|z |) on Hr = {z ∈ C : Re z > r}.

log
ln x ln(λx)

et

t

x λx

ε(t)

ε(t)

The largest error function that we can have is ε(t) =
√
2e−t .
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Sketch of the Baker domain construction II

Arakelian’s theorem tells us that we can only construct g with error ε(t)
in a sector of angle 0 < α < π. Thus, we semiconjugate λz with

√
z :

Hr

√
z

��

λz // Hλr

√
z

��√
Hr

√
λz // √Hλr

The new error function is

ε̃(t) =
ε(2t)
2

= 2
√
2e−2t .

Therefore we can construct an entire function g such that

|g(z)− log(
√
λz2)| < ε(|z |) on

√
Hr = {z ∈ C : Re z2 > r}.

Then f (z) = exp(g(z)) satisfies that f (
√
Hr ) ⊆

√
Hr for sufficiently large

r , and hence f has a fixed hyperbolic Baker domain containing
√
Hr (that

escapes to ∞).
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Sketch of the Baker domain construction III

In order to construct a transcendental self-map of C∗, let φ(z) = e−2z ,
and use Arakeljan’s theorem on tangential approximation to construct an
entire function g such that

∣∣∣g(z)− log(λz)−n log z
φ(1/z)

∣∣∣ < √2e−4|z|, on
√
Hr ,

|g(z)| < 1, on D.

Then the function

f (z) = zn exp
(

g(z)φ(1/z) + g(1/z)φ(z)
)

is a transcendental self-map of C∗ with two fixed hyperbolic Baker domains,
one escaping to 0 and the other one to ∞.

Finally, if you want to have a 2-periodic Baker domain U with e = ∞0,
define

f̃ (z) = 1/f (z)

so that U � 1/U by f̃ .
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THE END
Thank you for your attention!


